
Tutorial Sheet 5
Important: Some of the diagrams may not have rendered perfectly well
(there may be multiple arrows), if that is the case, please consult the
diagrams from the lecture notes.

1. Problem Statement: Creating different types of enemies in a
game

a. The problem with the current approach is that it violates the
Open/Closed Principle. Whenever a new enemy type needs to be
added, the createEnemy method in the EnemyFactory class needs to

be modified, which is a violation of the Open/Closed Principle.

b. The Factory Method design pattern can solve this problem by
providing an interface for creating objects (enemies), but allowing
subclasses to decide which class to instantiate.

c. UML Diagram:

Enemy

attackPlayer()
move()

EnemyFactory

createEnemy() : Enemy

Alien

attackPlayer()
move()

Robot

attackPlayer()
move()

AlienEnemyFactory

createEnemy() : Enemy

RobotEnemyFactory

createEnemy() : Enemy

2. Problem Statement: Text formatting in a text editor application



a. The issue with the current implementation is that it doesn’t support
dynamic composition of formatting options. If we need to create a
new formatting option that combines existing options, we would need
to create a new class for that specific combination.

b. The Decorator design pattern can solve this problem by allowing
dynamic composition of formatting options at runtime.

c. UML Diagram:

TextComponent

render()

PlainText

text: String
render()

TextDecorator

wrappedComponent: TextComponent
render()

BoldDecorator

render()

ItalicDecorator

render()

UnderlineDecorator

render()

3. Problem Statement: Complex interactions between subsystems

a. The problem with the current approach is that the client code is
tightly coupled with the implementation details of the subsystems
and their interactions. This makes the code difficult to understand,
maintain, and extend.

b. The Facade design pattern can solve this problem by providing a
simplified interface that hides the complexity of the subsystem
interactions from the client code.

c. UML Diagram:



Facade

doSomething()

SubsystemFacade

subsystemA: SubsystemA
subsystemB: SubsystemB
subsystemC: SubsystemC
doSomething()

SubsystemA

operation1()
getResult()

SubsystemB

operation2(data)
getResult()

SubsystemC

operation3(data1, data2)

4. Problem Statement: Accessing remote objects or resources

a. The potential issues with the current approach are:

Performance: Accessing remote objects or resources directly can
lead to performance issues, especially in distributed systems or over
slow networks.
Availability: If the remote object or resource is not available, the client
code will fail.

b. The Proxy design pattern can solve this problem by providing a local
representation or placeholder for the remote object or resource.

c. UML Diagram:



RemoteObject

performOperation()

RealRemoteObject

performOperation()

RemoteObjectProxy

realRemoteObject: RealRemoteObject
performOperation()

5. Problem Statement: Creating families of related objects

a. The potential issue with the current approach is that it violates the
Open/Closed Principle. Whenever a new product type needs to be
added, multiple classes need to be created or modified (e.g.,
ProductC, ProductCComponent, ProductCAccessory,

ProductCDocumentation).

b. The Abstract Factory design pattern can solve this problem by
providing an interface for creating families of related objects without
specifying their concrete classes.

c. UML Diagram:



Product

operation()

Component

operation()

Accessory

operation()

Documentation

operation()

AbstractFactory

createProduct() : Product
createComponent() : Component
createAccessory() : Accessory
createDocumentation() : Documentation

ProductA

operation()

ProductAComponent

operation()

ProductAAccessory

operation()

ProductADocumentation

operation()

ProductAFactory

createProduct() : Product
createComponent() : Component
createAccessory() : Accessory
createDocumentation() : Documentation

6. Problem Statement: Implementing different duck behaviors

a. The potential issue with the current approach is that it violates the
Single Responsibility Principle. The Duck class is responsible for both

the quacking and flying behaviors, which can lead to inflexible and
rigid code when new behaviors need to be added or modified.

b. The Strategy design pattern can solve this problem by separating the
behavior implementations from the core object (Duck) and allowing
them to be easily interchangeable.

c. UML Diagram:



FlyBehavior

fly()

QuackBehavior

quack()

Duck

flyBehavior: FlyBehavior
quackBehavior: QuackBehavior
setFlyBehavior(FlyBehavior)
setQuackBehavior(QuackBehavior)
performFly()
performQuack()

FlyWithWings

fly()

FlyNoWay

fly()

Quack

quack()

Squeak

quack()

7. Problem Statement: Managing weather data sources

a. The potential issue with the current approach is that it violates the
Open/Closed Principle. If we need to add new features like encryption
or compression to the data sources, we would need to modify the
existing FileDataSource and DatabaseDataSource classes, which can

lead to code duplication and increased complexity.

b. The Decorator design pattern can solve this problem by allowing the
addition of new features to the data sources dynamically without
modifying their existing code.

c. UML Diagram:



DataSource

writeData(data: String)
readData() : String

FileDataSource

writeData(data: String)
readData() : String

DatabaseDataSource

writeData(data: String)
readData() : String

DataSourceDecorator

wrappedSource: DataSource

writeData(data: String)
readData() : String

EncryptionDecorator

writeData(data: String)
readData() : String

CompressionDecorator

writeData(data: String)
readData() : String

8. Problem Statement: Managing user authentication and
authorization

a. The potential issue with the current approach is that it violates the
Open/Closed Principle. If we need to add additional security checks
or logging mechanisms, we would need to modify the existing
BasicAuthenticationService and BasicAuthorizationService

classes, which can lead to code duplication and increased
complexity.

b. The Decorator design pattern can solve this problem by allowing the
addition of new features to the authentication and authorization
services dynamically without modifying their existing code.

c. UML Diagram:

AuthenticationService

authenticate(username: String, password: String) : boolean

AuthorizationService

isAuthorized(username: String, resource: String) : boolean

BasicAuthenticationService

authenticate(username: String, password: String) : boolean

BasicAuthorizationService

isAuthorized(username: String, resource: String) : boolean

AuthenticationDecorator

wrappedService: AuthenticationService

authenticate(username: String, password: String) : boolean

AuthorizationDecorator

wrappedService: AuthorizationService

isAuthorized(username: String, resource: String) : boolean

LoggingAuthenticationDecorator

authenticate(username: String, password: String) : boolean

SecureAuthenticationDecorator

authenticate(username: String, password: String) : boolean

LoggingAuthorizationDecorator

isAuthorized(username: String, resource: String) : boolean

SecureAuthorizationDecorator

isAuthorized(username: String, resource: String) : boolean

9. Problem Statement: Managing different types of notifications

a. The potential issue with the current approach is that it violates the



Open/Closed Principle. If we need to add a new notification channel,
we would need to create a new class implementing the
NotificationService interface, which can lead to code duplication

and increased complexity.

b. The Strategy design pattern can solve this problem by separating the
different notification strategies from the core NotificationService

and allowing them to be easily interchangeable.

c. UML Diagram:

NotificationStrategy

sendNotification(message: String)

EmailNotificationStrategy

sendNotification(message: String)

SMSNotificationStrategy

sendNotification(message: String)

PushNotificationStrategy

sendNotification(message: String)

NotificationService

notificationStrategy: NotificationStrategy

setNotificationStrategy(strategy: NotificationStrategy)
sendNotification(message: String)


