Tutorial 1 - Solution
Introduction to Object-Oriented Modeling

Table of contents

1 Multiple Choice Questions 1

2 Descriptive Questions 2

1 Multiple Choice Questions

1. What is Encapsulation in OOP?

e Answer: B) Combining data and functions that operate on them. Encap-
sulation is the OOP principle that combines the data (attributes) and the methods
(functions) that operate on the data into a single unit called class. It also restricts
direct access to some of the object’s components, which can protect the object’s
internal state from unauthorized access and modification.

2. Which of the following is an example of Polymorphism in OOP?

e Answer: C) Multiple classes having methods with the same name but
different implementations. Polymorphism allows methods with the same name
to have different implementations in different classes. This can be achieved through
method overloading within a class or method overriding between parent and child
classes in inheritance.

3. Which OOP principle hides the internal state of an object and only exposes
operations?

o Answer: B) Abstraction. Abstraction focuses on hiding the internal implemen-
tation details of a system and exposing only the necessary parts of it to the outside
world. It allows focusing on what an object does instead of how it does it.

4. Choose the correct statement about ‘Loose Coupling’ in software design.



o Answer: A) It makes it easier to modify and maintain software. Loose
coupling refers to a design goal that seeks to reduce the interdependencies between
components of a system to make it easier to modify, extend, and maintain.

2 Descriptive Questions

5. Describe the difference between an ‘Abstract Class’ and an ‘Interface’.

o An abstract class is a class that cannot be instantiated and is designed to be inherited
by other classes. It can contain both abstract methods (which do not have an implemen-
tation and must be implemented by subclasses) and concrete methods (which have an
implementation). Interfaces, on the other hand, are contracts that define a set of meth-
ods that implementing classes must provide. Interfaces cannot contain any concrete
methods (methods with an implementation) and do not maintain any state. Abstract
classes are used when some common implementation among related classes should be
shared, whereas interfaces are ideal for defining a common protocol for unrelated classes.

6. Why does software such as the Linux kernel or Mozilla Firefox tend to get
more complex over time?

e Software complexity increases over time due to the accumulation of features, bug fixes,
and enhancements. As more code is added to accommodate new functionalities, the
interdependencies between various parts of the software increase, making it harder to
maintain and understand. This phenomenon, often referred to as “software bloat,” is
driven by the need to meet evolving user requirements, security updates, and compati-
bility with new hardware or software environments.

7. How do techniques such as information hiding, polymorphism, and interfaces
promote loose coupling?

¢ Information hiding, polymorphism, and interfaces promote loose coupling by minimizing
the interdependencies between components of a system. Information hiding achieves
this by encapsulating details within modules, reducing the reliance of other parts of
the system on those internal workings. Polymorphism allows for the interchangeability
of objects with different implementations, enabling a more flexible and modular design.
Interfaces define contracts for interaction, allowing different components to communicate
through well-defined protocols without needing to know the specifics of each other’s
implementations. Together, these techniques facilitate easier modification, extension,
and maintenance of software.

8. Explain what the waterfall model of software development lifecycle is with a
detailed overview of each phase.



e The waterfall model is a sequential design process used in software development, where
progress flows steadily downwards through several phases like a waterfall. The phases
include:

— Requirements Analysis: This phase involves gathering all the specific require-
ments for the software to be developed. It is crucial for setting the foundation for
the entire project.

— System Design: Based on the requirements analysis, the system’s architecture
and design are planned, outlining the software’s structure, components, modules,
and interface.

— Implementation: In this phase, the actual coding of the software takes place
based on the design documents created in the previous phase.

— Integration and Testing: After implementation, all the pieces are brought to-
gether, and the software is tested as a whole to find and fix bugs and ensure that
it meets the initial requirements.

— Deployment: Once testing is complete and the software is bug-free, it is deployed
to the production environment where the end-users can begin to use it.

— Maintenance: After deployment, the software will require updates, improvements,
and bug fixes based on user feedback and evolving requirements.

This model is best suited for projects with well-understood requirements where changes are
unlikely during the development process.



	Multiple Choice Questions
	Descriptive Questions

