
3.4 HASH TABLES

If keys are small integers, we can use an array to implement an unordered symbol table,
by interpreting the key as an array index so that we can store the value associated with
key i in array entry i, ready for immediate access. In this section, we consider hashing,
an extension of this simple method that handles more complicated types of keys. We
reference key-value pairs using arrays by doing arithmetic operations to transform keys
into array indices.

Search algorithms that use hashing consist of two separate parts. The first part is to
compute a hash function that transforms the search key into an array index. Ideally,

different keys would map to different indices. This ideal is gener-
ally beyond our reach, so we have to face the possibility that two
or more different keys may hash to the same array index. Thus,
the second part of a hashing search is a collision-resolution process
that deals with this situation. After describing ways to compute
hash functions, we shall consider two different approaches to col-
lision resolution: separate chaining and linear probing.

Hashing is a classic example of a time-space tradeoff. If there
were no memory limitation, then we could do any search with
only one memory access by simply using the key as an index in
a (potentially huge) array. This ideal often cannot be achieved,
however, because the amount of memory required is prohibitive
when the number of possible key values is huge. On the other
hand, if there were no time limitation, then we can get by with
only a minimum amount of memory by using sequential search
in an unordered array. Hashing provides a way to use a reasonable
amount of both memory and time to strike a balance between
these two extremes. Indeed, it turns out that we can trade off time

and memory in hashing algorithms by adjusting parameters, not by rewriting code. To
help choose values of the parameters, we use classical results from probability theory.

Probability theory is a triumph of mathematical analysis that is beyond the scope of
this book, but the hashing algorithms we consider that take advantage of the knowl-
edge gained from that theory are quite simple, and widely used. With hashing, you can
implement search and insert for symbol tables that require constant (amortized) time
per operation in typical applications, making it the method of choice for implementing
basic symbol tables in many situations.

0

1

2

3

M-1

b pqr

a xyz
d uvw

c ijk
collision

key hash

a 2 xyz
b 0 pqr
c 3 ijk
d 2 uvw

.

.

.

value

Hashing: the crux of the problem

458

davidwickerhf
Highlight

 Hash functions The first problem that we face is the computation of the hash
function, which transforms keys into array indices. If we have an array that can hold
M key-value pairs, then we need a hash function that can transform any given key into
an index into that array: an integer in the range [0, M – 1]. We seek a hash function
that both is easy to compute and uniformly distributes the keys: for each key, every
integer between 0 and M – 1 should be equally likely (independently for
every key). This ideal is somewhat mysterious; to understand hashing,
it is worthwhile to begin by thinking carefully about how to implement
such a function.

The hash function depends on the key type. Strictly speaking, we need
a different hash function for each key type that we use. If the key involves a
number, such as a social security number, we could start with that num-
ber; if the key involves a string, such as a person’s name, we need to con-
vert the string into a number; and if the key has multiple parts, such as
a mailing address, we need to combine the parts somehow. For many
common types of keys, we can make use of default implementations pro-
vided by Java. We briefly discuss potential implementations for various
types of keys so that you can see what is involved because you do need to
provide implementations for key types that you create.

Typical example. Suppose that we have an application where the keys
are U.S. social security numbers. A social security number such as
123-45-6789 is a nine-digit number divided into three fields. The first
field identifies the geographical area where the number was issued (for
example, social security numbers whose first field is 035 are from Rhode
Island and numbers whose first field is 214 are from Maryland) and the
other two fields identify the individual. There are a billion (109) different
social security numbers, but suppose that our application will need to
process just a few hundred keys, so that we could use a hash table of size
M = 1,000. One possible approach to implementing a hash function is
to use three digits from the key. Using three digits from the third field is
likely to be preferable to using the three digits in the first field (since customers may not
be uniformly dispersed over geographic areas), but a better approach is to use all nine
digits to make an int value, then consider hash functions for integers, described next.

Positive integers. The most commonly used method for hashing integers is called
 modular hashing : we choose the array size M to be prime and, for any positive inte-
ger key k, compute the remainder when dividing k by M. This function is very easy to
compute (k % M, in Java) and is effective in dispersing the keys evenly between 0 and

212 12 18
618 18 36
302 2 11
940 40 67
702 2 23
704 4 25
612 12 30
606 6 24
772 72 93
510 10 25
423 23 35
650 50 68
317 17 26
907 7 34
507 7 22
304 4 13
714 14 35
857 57 81
801 1 25
900 0 27
413 13 25
701 1 22
418 18 30
601 1 19

key hash
(M = 100)

hash
(M = 97)

Modular hashing

4593.4 ■ Hash Tables

M – 1. If M is not prime, it may be the case that not all of the bits of the key play a role,
which amounts to missing an opportunity to disperse the values evenly. For example,
if the keys are base-10 numbers and M is 10 k, then only the k least significant digits are
used. As a simple example where such a choice might be problematic, suppose that the
keys are telephone area codes and M = 100. For historical reasons, most area codes in
the United States have middle digit 0 or 1, so this choice strongly favors the values less
than 20, where the use of the prime value 97 better disperses them (a prime value not
close to 100 would do even better). Similarly, IP addresses that are used in the internet
are binary numbers that are not random for similar historical reasons as for telephone
area codes, so we need to use a table size that is a prime (in particular, not a power of 2)
 if we want to use modular hashing to disperse them.

Floating-point numbers. If the keys are real numbers between 0 and 1, we might just
multiply by M and round off to the nearest integer to get an index between 0 and M – 1.
Although this approach is intuitive, it is defective because it gives more weight to the
most significant bits of the keys; the least significant bits play no role. One way to ad-
dress this situation is to use modular hashing on the binary representation of the key
(this is what Java does).

Strings. Modular hashing works for long keys such as strings, too: we simply treat
them as huge integers. For example, the code at left computes a modular hash func-
tion for a String s: recall that charAt() returns a char value in Java, which is a 16-bit
nonnegative integer. If R is greater than any character value, this computation would

be equivalent to treating the String as
an N-digit base-R integer, computing the
remainder that results when dividing that
number by M. A classic algorithm known
as Horner’s method gets the job done with
N multiplications, additions, and modulus
operations. If the value of R is sufficiently

small that no overflow occurs, the result is an integer between 0 and M – 1, as desired.
The use of a small prime integer such as 31 ensures that the bits of all the characters
play a role. Java’s default implementation for String uses a method like this.

 Compound keys. If the key type has multiple integer fields, we can typically mix them
together in the way just described for String values. For example, suppose that search
keys are of type Date, which has three integer fields: day (two-digit day), month (two-
digit month), and year (four-digit year).We compute the number

int hash = (((day * R + month) % M) * R + year) % M;

int hash = 0;
for (int i = 0; i < s.length(); i++)
 hash = (R * hash + s.charAt(i)) % M;

 Hashing a string key

460 CHAPTER 3 ■ Searching

which, if the value of R is sufficiently small that no overflow occurs, is an integer be-
tween 0 and M – 1, as desired. In this case, we could save the cost of the inner % M opera-
tion by choosing a moderate prime value such as 31 for R. As with strings, this method
generalizes to handle any number of fields.

 Java conventions. Java helps us address the basic problem that every type of data needs
a hash function by ensuring that every data type inherits a method called hashCode()
that returns a 32-bit integer. The implementation of hashCode() for a data type must
be consistent with equals. That is, if a.equals(b) is true, then a.hashCode() must have
the same numerical value as b.hashCode(). Conversely, if the hashCode() values are
different, then we know that the objects are not equal. If the hashCode() values are
the same, the objects may or may not be equal, and we must use equals() to decide
which condition holds. This convention is a basic requirement for clients to be able to
use hashCode() for symbol tables. Note that it implies that you must override both
hashCode() and equals() if you need to hash with a user-defined type. The default
implementation returns the machine address of the key object, which is seldom what
you want. Java provides hashCode() implementations that override the defaults for
many common types (including String, Integer, Double, File, and URL).

Converting a hashCode() to an array index. Since our goal is an array index, not a
32-bit integer, we combine hashCode() with modular hashing in our implementations
to produce integers between 0 and M – 1, as follows:

private int hash(Key x)
{ return (x.hashCode() & 0x7fffffff) % M; }

This code masks off the sign bit (to turn the 32-bit number into a 31-bit nonnegative
integer) and then computes the remainder when dividing by M, as in modular hashing.
Programmers commonly use a prime number for the hash table size M when using code
like this, to attempt to make use of all the
bits of the hash code. Note: To avoid con-
fusion, we omit all of these calculations in
our hashing examples and use instead the
hash values in the table at right.

User-defined hashCode(). Client code expects that hashCode() disperses the keys
uniformly among the possible 32-bit result values. That is, for any object x, you can
write x.hashCode() and, in principle, expect to get any one of the 232 possible 32-bit
values with equal likelihood. Java’s hashCode() implementations for String, Integer,
Double, File, and URL aspire to this functionality; for your own type, you have to
try to do it on your own. The Date example that we considered on page 460 illustrates

 Hash values for keys in examples

S E A R C H X M P L

2 0 0 4 4 4 2 4 3 3

6 10 4 14 5 4 15 1 14 6

key

hash (M = 5)

hash (M = 16)

4613.4 ■ Hash Tables

one way to proceed: make integers from
the instance variables and use modular
hashing. In Java, the convention that all
data types inherit a hashCode() method
enables an even simpler approach: use the
hashCode() method for the instance vari-
ables to convert each to a 32-bit int value
and then do the arithmetic, as illustrated
at left for Transaction. For primitive-
type instance variables, note that a cast to
a wrapper type is necessary to access the
hashCode() method. Again, the precise
values of the multiplier (31 in our exam-
ple) is not particularly important.

Software caching. If computing the hash
code is expensive, it may be worthwhile to

cache the hash for each key. That is, we maintain an instance variable hash in the key
type that contains the value of hashCode() for each key object (see Exercise 3.4.25).
On the first call to hashCode(), we have to compute the full hash code (and set the val-
ue of hash), but subsequent calls on hashCode() simply return the value of hash. Java
uses this technique to reduce the cost of computing hashCode() for String objects.

In summary, we have three primary requirements in implementing a good hash
function for a given data type:

■ It should be consistent—equal keys must produce the same hash value.
■ It should be efficient to compute.
■ It should uniformly distribute the keys.

Satisfying these requirements simultaneously is a job for experts. As with many built-in
capabilities, Java programmers who use hashing assume that hashCode() does the job,
absent any evidence to the contrary.

Still, you should be vigilant whenever using hashing in situations where good perfor-
mance is critical, because a bad hash function is a classic example of a performance bug:
everything will work properly, but much more slowly than expected. Perhaps the easiest
way to ensure uniformity is to make sure that all the bits of the key play an equal role in
computing every hash value; perhaps the most common mistake in implementing hash
functions is to ignore significant numbers of the key bits. Whatever the implementa-
tion, it is wise to test any hash function that you use, when performance is important.
Which takes more time: computing a hash function or comparing two keys? Does your

public class Transaction
{
 ...
 private final String who;
 private final Date when;
 private final double amount;

 public int hashCode()
 {

int hash = 17;
hash = 31 * hash + who.hashCode();
hash = 31 * hash + when.hashCode();
hash = 31 * hash

+ ((Double) amount).hashCode();
return hash;

 }
 ...
}

 Implementing hashCode() in a user-defined type

462 CHAPTER 3 ■ Searching

hash function spread a typical set of keys uniformly among the values between 0 and
M – 1? Doing simple experiments that answer these questions can protect future clients
from unfortunate surprises. For example, the histogram above shows that our hash()
implementation using the hashCode() from Java’s String data type produces a rea-
sonable dispersion of the words for our Tale of Two Cities example.

Underlying this discussion is a fundamental assumption that we make when using
hashing, an idealized model that we do not actually expect to achieve, but that guides
our thinking when implementing hashing algorithms:

Assumption J (uniform hashing assumption). The hash functions that we use uni-
formly and independently distribute keys among the integer values between 0 and
M – 1.

Discussion: With all of the arbitrary choices that we have made, we certainly do not
have hash functions that uniformly and independently distribute keys in this strict
mathematical sense. Indeed, the idea of implementing consistent functions that are
guaranteed to uniformly and independently distribute keys leads to deep theoreti-
cal studies that tell us that computing such a function easily is likely to be a very
elusive goal. In practice, as with random numbers generated by Math.random(),
most programmers are content to have hash functions that cannot easily be distin-
guished from random ones. Few programmers check for independence, however,
and this property is rarely satisfied.

Despite the difficulty of validating it, Assumption J is a useful way to think
about hashing for two primary reasons. First, it is a worthy goal when designing hash
functions that guides us away from making arbitrary decisions that might lead to an
excessive number of collisions. Second, even though we may not be able to validate the
assumption itself, it does enable us to use mathematical analysis to develop hypotheses
about the performance of hashing algorithms that we can check with experiments.

Hash value frequencies for words in Tale of Two Cities (10,679 keys, M = 97)

0 96

fr
eq

ue
nc

y

key value

110 � 10679/97

4633.4 ■ Hash Tables

Hashing with separate chaining A hash function converts keys into array in-
dices. The second component of a hashing algorithm is collision resolution: a strategy
for handling the case when two or more keys to be inserted hash to the same index. A
straightforward and general approach to collision resolution is to build, for each of the
M array indices, a linked list of the key-value pairs whose keys hash to that index. This
method is known as separate chaining because items that collide are chained together
in separate linked lists. The basic idea is to choose M to be sufficiently large that the lists
are sufficiently short to enable efficient search through a two-step process: hash to find
the list that could contain the key, then sequentially search through that list for the key.

One way to proceed is to ex-
pand SequentialSearchST (Al-
gorithm 3.1) to implement sep-
arate chaining using linked-list
primitives (see Exercise 3.4.2).
A simpler (though slightly less
efficient) way to proceed is to
adopt a more general approach:
we build, for each of the M ar-
ray indices, a symbol table of the
keys that hash to that index, thus
reusing code that we have already
developed. The implementa-
tion SeparateChainingHashST

in Algorithm 3.5 maintains an
array of SequentialSearchST
objects and implements get()
and put() by computing a
hash function to choose which

SequentialSearchST object can contain the key and then using get() and put() (re-
spectively) from SequentialSearchST to complete the job.

Since we have M lists and N keys, the average length of the lists is always N
 M, no
matter how the keys are distributed among the lists. For example, suppose that all the
items fall onto the first list—the average length of the lists is (N + 0 + 0 + 0 +. . . + 0)/M =
N
 M. However the keys are distributed on the lists, the sum of the list lengths is N and
the average is N
 M. Separate chaining is useful in practice because each list is extremely
likely to have about N
 M key-value pairs. In typical situations, we can verify this con-
sequence of Assumption J and count on fast search and insert.

Hashing with separate chaining for standard indexing client

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

464 CHAPTER 3 ■ Searching

'ITJ---rnl~

ALGORITHM 3.5 Hashing with separate chaining

public class SeparateChainingHashST<Key, Value>
{
 private int N; // number of key-value pairs
 private int M; // hash table size
 private SequentialSearchST<Key, Value>[] st; // array of ST objects

 public SeparateChainingHashST()
 { this(997); }

 public SeparateChainingHashST(int M)
 { // Create M linked lists.

this.M = M;
st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
for (int i = 0; i < M; i++)

st[i] = new SequentialSearchST();
 }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key)
 { return (Value) st[hash(key)].get(key); }

 public void put(Key key, Value val)
 { st[hash(key)].put(key, val); }

 public Iterable<Key> keys()
 // See Exercise 3.4.19.

}

This basic symbol-table implementation maintains an array of linked lists, using a hash function to
choose a list for each key. For simplicity, we use SequentialSearchST methods. We need a cast when
creating st[] because Java prohibits arrays with generics. The default constructor specifies 997 lists,
so that for large tables, this code is about a factor of 1,000 faster than SequentialSearchST. This
quick solution is an easy way to get good performance when you have some idea of the number of
key-value pairs to be put() by a client. A more robust solution is to use array resizing to make sure
that the lists are short no matter how many key-value pairs are in the table (see page 474 and Exercise
3.4.18).

4653.4 ■ Hash Tables

Proposition K. In a separate-chaining hash table with M lists and N keys, the prob-
ability (under Assumption J) that the number of keys in a list is within a small
constant factor of N/M is extremely close to 1.

Proof sketch: Assumption J makes this an application of classical probability
theory. We sketch the proof, for readers who are familiar with basic probabilistic
analysis. The probability that a given list will contain exactly k keys is given by the
binomial distribution

N
k

1
M

M − 1
M

k N − k

by the following argument: Choose k out of the N keys. Those k keys hash to the
given list with probability 1
 M, and the other N – k keys do not hash to the given
list with probability 1 – (1
 M). In terms of � � N
 M, we can rewrite this expres-
sion as

N
k N N

k N − k

1 −

which (for small �) is closely
approximated by the classical
 Poisson distribution

ke
k!

It follows that the probability that a list has more than t � keys on it is bounded
by the quantity (� e/t)t e –�. This probability is extremely small for practical ranges
of the parameters. For example, if the average length of the lists is 10, the prob-
ability that we will hash to some list with more than 20 keys on it is less than (10
e/2)2 e –10 � 0.0084, and if the average length of the lists is 20, the probability that
we will hash to some list with more than 40 keys on it is less than (20 e/2)2 e –20

 0.0000016. This concentration result does not guarantee that every list will be
short. Indeed it is known that, if � is a constant, the average length of the longest
list grows with log N / log log N.

.125

0

0 10 20 30

(10, .12572...)

Poisson distribution (N = 104 , M = 103 , � = 10)

Binomial distribution (N = 104 , M = 103 , � = 10)

.125

0

0 10 20 30

(10, .12511...)

466 CHAPTER 3 ■ Searching

This classical mathematical analysis is compelling, but it is important to note that
it completely depends on Assumption J. If the hash function is not uniform and inde-
pendent, the search and insert cost could be proportional to N, no better than with
sequential search. Assumption J is much stronger than the corresponding assumption
for other probabilistic algorithms that we have seen, and much more difficult to verify.
With hashing, we are assuming that each and every key, no matter how complex, is
equally likely to be hashed to one of M indices. We cannot afford to run experiments
to test every possible key, so we would have to do more sophisticated experiments in-
volving random sampling from the set of possible keys used in an application, followed
by statistical analysis. Better still, we can use the algorithm itself as part of the test, to
validate both Assumption J and the mathematical results that we derive from it.

Property L. In a separate-chaining hash table with M lists and N keys, the number
of compares (equality tests) for search miss and insert is ~N/M.

Evidence: Good performance of the algorithms in practice does not require the
hash function to be fully uniform in the technical sense of Assumption J. Count-
less programmers since the 1950s have seen the speedups predicted by Proposi-
tion K, even for hash functions that are certainly not uniform. For example, the
diagram on page 468 shows that list length distribution for our FrequencyCounter
example (using our hash() implementation based on the hashCode() from Java’s
String data type) precisely matches the theoretical model. One exception that has
been documented on numerous occasions is poor performance due to hash func-
tions not taking all of the bits of the keys into account. Otherwise, the preponder-
ance of the evidence from the experience of practical programmers puts us on
solid ground in stating that hashing with separate chaining using an array of size M
speeds up search and insert in a symbol table by a factor of M.

Table size. In a separate-chaining implementation, our goal is to choose the table size
M to be sufficiently small that we do not waste a huge area of contiguous memory
with empty chains but sufficiently large that we do not waste time searching through
long chains. One of the virtues of separate chaining is that this decision is not critical:
if more keys arrive than expected, then searches will take a little longer than if we had
chosen a bigger table size ahead of time; if fewer keys are in the table, then we have ex-
tra-fast search with some wasted space. When space is not a critical resource, M can be
chosen sufficiently large that search time is constant; when space is a critical resource,
we still can get a factor of M improvement in performance by choosing M to be as

4673.4 ■ Hash Tables

large as we can afford. For our example FrequencyCounter study, we see in the figure
below a reduction in the average cost from thousands of compares per operation for
SequentialSearchST to a small constant for SeparateChainingHashST, as expected.
Another option is to use array resizing to keep the lists short (see Exercise 3.4.18).

 Deletion. To delete a key-value pair, simply hash to find the SequentialSearchST
containing the key, then invoke the delete() method for that table (see Exercise
3.1.5). Reusing code in this way is preferable to reimplementing this basic operation
on linked lists.

Ordered operations. The whole point of hashing is to uniformly disperse the keys, so
any order in the keys is lost when hashing. If you need to quickly find the maximum
or minimum key, find keys in a given range, or implement any of the other operations
in the ordered symbol-table API on page 366, then hashing is not appropriate, since these
operations will all take linear time.

Hashing with separate chaining is easy to implement and probably the fastest (and
most widely used) symbol-table implementation for applications where key order is
not important. When your keys are built-in Java types or your own type with well-
tested implementations of hashCode(), Algorithm 3.5 provides a quick and easy path
to fast search and insert. Next, we consider an alternative scheme for collision resolu-
tion that is also effective.

125

0
0 10 20 30

= 10.711...)

ke �

k!

List lengths for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST
list lengths (10,679 keys, M = 997)

fr
eq

ue
nc

y

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (M = 997)

3.9

10

0

0 14350
operations

eq
ua

lit
y

te
st

s cumulative
average

468 CHAPTER 3 ■ Searching

. -- -... _,, --··-----------

 Hashing with linear probing Another approach to implementing hashing is to
store N key-value pairs in a hash table of size M > N, relying on empty entries in the
table to help with collision resolution. Such methods are called open-addressing hashing
methods.

The simplest open-addressing method is called linear probing: when there is a colli-
sion (when we hash to a table index that is already occupied with a key different from
the search key), then we just check the next entry in the table (by incrementing the
index). Linear probing is characterized by identifying three possible outcomes:

■ Key equal to search key: search hit
■ Empty position (null key at indexed position): search miss
■ Key not equal to search key: try next entry

We hash the key to a table index, check whether the search key matches the key there,
and continue (incrementing the index, wrapping back to the beginning of the table
if we reach the end) until finding either the search key or an empty table entry. It is
customary to refer to the operation of determining whether or not a given table entry

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3

 A C S E R
 2 5 0 1 3
 A C S H E R
 2 5 0 5 1 3
 A C S H E R
 2 5 0 5 6 3
 A C S H E R X
 2 5 0 5 6 3 7

 A C S H E R X
 8 5 0 5 6 3 7
 M A C S H E R X
 9 8 5 0 5 6 3 7

P M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 3 7

10 11 12 13 14 15

11 12

1110

10

10

Trace of linear-probing ST implementation for standard indexing client

entries in gray
are untouched

probe sequence
wraps to 0

entries in red
are new

keys in black
are probes

S 6 0

E 10 1

A 4 2

R 14 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 14 10

L 6 11

E 10 12 keys[]
vals[]

key hash value

4693.4 ■ Hash Tables

t t

\

ALGORITHM 3.6 Hashing with linear probing

public class LinearProbingHashST<Key, Value>
{
 private int N; // number of key-value pairs in the table
 private int M = 16; // size of linear-probing table
 private Key[] keys; // the keys
 private Value[] vals; // the values

 public LinearProbingHashST()
 {
 keys = (Key[]) new Object[M];
 vals = (Value[]) new Object[M];
 }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 private void resize() // See page 474.

 public void put(Key key, Value val)
 {
 if (N >= M/2) resize(2*M); // double M (see text)

 int i;
 for (i = hash(key); keys[i] != null; i = (i + 1) % M)
 if (keys[i].equals(key)) { vals[i] = val; return; }
 keys[i] = key;
 vals[i] = val;
 N++;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i + 1) % M)
 if (keys[i].equals(key))
 return vals[i];
 return null;
 }
}

This symbol-table implementation keeps keys and values in parallel arrays (as in BinarySearchST)
but uses empty spaces (marked by null) to terminate clusters of keys. If a new key hashes to an empty
entry, it is stored there; if not, we scan sequentially to find an empty position. To search for a key, we
scan sequentially starting at its hash index until finding null (search miss) or the key (search hit).
Implementation of keys() is left as Exercise 3.4.19.

470 CHAPTER 3 ■ Searching

holds an item whose key is equal to the search key as a probe. We use the term inter-
changeably with the term compare that we have been using, even though some probes
are tests for null.

The essential idea behind hashing with open addressing is this: rather than using mem-
ory space for references in linked lists, we use it for the empty entries in the hash table,
which mark the ends of probe sequences. As you can see from LinearProbingHashST
(Algorithm 3.6), applying this idea to implement the symbol-table API is quite
straightforward. We implement the table with parallel arrays, one for the keys and one
for the values, and use the hash function as an index to access the data as just discussed.

Deletion. How do we delete a key-value pair from a linear-probing table? If you think
about the situation for a moment, you will see that setting the key’s table position to
null will not work, because that might prematurely terminate the search for a key that
was inserted into the table later. As an example, suppose that we try to delete C in this
way in our trace example, then search for H. The
hash value for H is 4, but it sits at the end of the
cluster, in position 7. If we set position 5 to null,
then get() will not find H. As a consequence, we
need to reinsert into the table all of the keys in the
cluster to the right of the deleted key. This process
is trickier than it might seem, so you are encour-
aged to trace through the code at right for an ex-
ample that exercises it (see Exercise 3.4.17).

As with separate chaining, the performance of
hashing with open addressing depends on the ratio

� N
 M, but we interpret it differently. We refer
to � as the load factor of a hash table. For separate
chaining, � is the average number of keys per list
and is generally larger than 1; for linear probing,

 is the percentage of table entries that are occu-
pied; it cannot be greater than 1. In fact, we cannot
let the load factor reach 1 (completely full table)
in LinearProbingHashST because a search miss
would go into an infinite loop in a full table. In-
deed, for the sake of good performance, we use array resizing to guarantee that the load
factor is between one-eighth and one-half. This strategy is validated by mathematical
analysis, which we consider before we discuss implementation details.

public void delete(Key key)
{
 if (!contains(key)) return;
 int i = hash(key);
 while (!key.equals(keys[i]))
 i = (i + 1) % M;
 keys[i] = null;
 vals[i] = null;
 i = (i + 1) % M;
 while (keys[i] != null)
 {
 Key keyToRedo = keys[i];
 Value valToRedo = vals[i];
 keys[i] = null;
 vals[i] = null;
 N--;
 put(keyToRedo, valToRedo);
 i = (i + 1) % M;
 }
 N--;
 if (N > 0 N == M/8) resize(M/2);
}

 Deletion for linear probing

4713.4 ■ Hash Tables

 Clustering. The average cost of linear probing depends on the way in which the entries
clump together into contiguous groups of occupied table entries, called clusters, when

they are inserted. For example, when the key C is inserted
in our example, the result is a cluster (A C S) of length
3, which means that four probes are needed to insert H
because H hashes to the first position in the cluster. Short
clusters are certainly a requirement for efficient perfor-
mance. This requirement can be problematic as the table
fills, because long clusters are common. Moreover, since
all table positions are equally likely to be the hash value
of the next key to be inserted (under the uniform hash-
ing assumption), long clusters are more likely to increase
in length than short ones, because a new key hashing to
any entry in the cluster will cause the cluster to increase

in length by 1 (and possibly much more, if there is just one table entry separating the
cluster from the next one). Next, we turn to the challenge of quantifying the effect of
clustering to predict performance in linear probing, and using that knowledge to set
design parameters in our implementations.

Table occupancy patterns (2,048 keys, tables laid out in 128-position rows)

long clusters are common

 = 1/2

 = 1/4

keys[0..127]

keys[8064..8192]

linear probing random

9/64 chance of new key
hitting this cluster

key lands here
in that event

and forms a much
longer cluster

Clustering in linear probing (M = 64)

before

after

472 CHAPTER 3 ■ Searching

/
I •••••••••I••••••••••••• •• •••

.......... ~

l•••••••••••••••••••••••I •• •••

.................. ·- --· ·-
.. .:.·.:.::-::-

~·==:~·;·:::-::

:};~\~\ ···----
=:~~l::r.::-~t:=·=~t::-::.:~~-~~~i_;=--r:\=ii~~~~-i~~:-;

'------

Analysis of linear probing. Despite the relatively simple form of the results, precise
analysis of linear probing is a very challenging task. Knuth’s derivation of the following
formulas in 1962 was a landmark in the analysis of algorithms:

Proposition M. In a linear-probing hash table with M lists and N = � M keys, the
average number of probes (under Assumption J) required is

1
2 1 −

1
1 + 1

2 (1 −)2

1
1 + and~ ~

for search hits and search misses (or inserts), respectively. In particular, when �
is about 1/2, the average number of probes for a search hit is about 3/2 and for a
search miss is about 5/2. These estimates lose a bit of precision as � approaches 1,
but we do not need them for that case, because we will only use linear probing for

 less than one-half.

Discussion: We compute the average by computing the cost of a search miss start-
ing at each position in the table, then dividing the total by M. All search misses
take at least 1 probe, so we count the number of probes after the first. Consider the
following two extremes in a linear-probing table that is half full (M = 2N): In the
best case, table positions with even indices could be empty, and table positions with
odd indices could be occupied. In the worst case, the first half of the table positions
could be empty, and the second half occupied. The average length of the clusters
in both cases is N/(2N) = 1/2, but the average number of probes for a search miss
is 1 (all searches take at least 1 probe) plus (0 + 1 + 0 + 1 +. . .)/(2 N) = 1/2 in the
best case, and is 1 plus (N + (N – 1) + . . .)
 (2 N) ~ N/4 in the worst case. This
argument generalizes to show that the average number of probes for a search miss
is proportional to the squares of the lengths of the clusters: If a cluster is of length t,
then the expression (t + (t – 1) + . . . + 2 + 1) / M = t(t + 1)/(2M) counts the con-
tribution of that cluster to the grand total. The sum of the cluster lengths is N, so,
adding this cost for all entries in the table, we find that the total average cost for a
search miss is 1 + N
 (2M) plus the sum of the squares of the lengths of the clusters,
divided by 2M. Thus, given a table, we can quickly compute the average cost of a
search miss in that table (see Exercise 3.4.21). In general, the clusters are formed
by a complicated dynamic process (the linear-probing algorithm) that is difficult to
characterize analytically, and quite beyond the scope of this book.

4733.4 ■ Hash Tables

Proposition M tells us (under our usual Assumption J) that we can expect a search to
require a huge number of probes in a nearly full table (as � approaches 1 the values of
the formulas describing the number of probes grow very large) but that the expected
number of probes is between 1.5 and 2.5 if we can ensure that the load factor � is less
than 1/2. Next, we consider the use of array resizing for this purpose.

 Array resizing We can use our standard array-resizing technique from Chapter
1 to ensure that the load factor never exceeds one-half. First, we need a new construc-
tor for LinearProbingHashST that takes a fixed capacity as argument (add a line to

the constructor in Algorithm
3.6 that sets M to the given value
before creating the arrays). Next,
we need the resize() method
given at left, which creates a new
LinearProbingHashST of the giv-
en size, puts all the keys and values
in the table in the new one, then
rehashes all the keys into the new
table. These additions allow us to
implement array doubling. The call
to resize() in the first statement
in put() ensures that the table is at

most one-half full. This code builds a hash table twice the size with the same keys, thus
halving the value of �. As in other applications of array resizing, we also need to add

 if (N > 0 && N <= M/8) resize(M/2);

as the last statement in delete() to ensure that the table is at least one-eighth full.
This ensures that the amount of memory used is always within a constant factor of the
number of key-value pairs in the table. With array resizing, we are assured that � � 1/2.

Separate chaining. The same method works to keep lists short (of average
length between 2 and 8) in separate chaining: replace LinearProbingHashST by
SeparateChainingHashST in resize(), call resize(2*M) when (N >= M/2) in put(),
and call resize(M/2) when (N > 0 && N <= M/8) in delete(). For separate chain-
ing, array resizing is optional and not worth your trouble if you have a decent estimate
of the client’s N: just pick a table size M based on the knowledge that search times are
proportional to 1+ N/M. For linear probing, array resizing is necessary. A client that
inserts more key-value pairs than you expect will encounter not just excessively long
search times, but an infinite loop when the table fills.

private void resize(int cap)
{
 LinearProbingHashST<Key, Value> t;
 t = new LinearProbingHashST<Key, Value>(cap);
 for (int i = 0; i < M; i++)
 if (keys[i] != null)
 t.put(keys[i], vals[i]);
 keys = t.keys;
 vals = t.vals;
 M = t.M;
}

 Resizing a linear-probing hash table

474 CHAPTER 3 ■ Searching

 Amortized analysis. From a theoretical standpoint, when we use array resizing, we
must settle for an amortized bound, since we know that those insertions that cause the
table to double will require a large number of probes.

hash table is built with array resizing, starting with Proposition N. Suppose a
an empty table. Under Assumption J, any sequence of t search, insert, and delete
symbol-table operations is executed in expected time proportional to t and with
memory usage always within a constant factor of the number of keys in the table.

Proof.: For both separate chaining and linear probing, this fact follows from a sim-
ple restatement of the amortized analysis for array growth that we first discussed in
Chapter 1, coupled with Proposition K and Proposition M.

10

0

0 14350

4.2

cumulative
average

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (with doubling)

operations

eq
ua

lit
y

te
st

s

10

0

0 14350
operations

eq
ua

lit
y

te
st

s

3.2

cumulative
average

Costs for java FrequencyCounter 8 < tale.txt using LinearProbingHashST (with doubling)

4753.4 ■ Hash Tables

[__________ _
I

The plots of the cumulative averages for our FrequencyCounter example (shown at
the bottom of the previous page) nicely illustrate the dynamic behavior of array resiz-
ing in hashing. Each time the array doubles, the cumulative average increases by about
1, because each key in the table needs to be rehashed; then it decreases because about
half as many keys hash to each table position, with the rate of decrease slowing as the
table fills again.

 Memory As we have indicated, understanding memory usage is an important factor
if we want to tune hashing algorithms for optimum performance. While such tuning
is for experts, it is a worthwhile exercise to calculate a rough estimate of the amount of
memory required, by estimating the number of references used, as follows: Not counting
the memory for keys and values, our implementation SeparateChainingHashST uses
memory for M references to SequentialSearchST objects plus M SequentialSearchST
objects. Each SequentialSearchST object has the usual 16 bytes of object overhead
plus one 8-byte reference (first), and there are a total of N Node objects, each with 24
bytes of object overhead plus 3 references (key, value, and next). This compares with
an extra reference per node for binary search trees. With array resizing to ensure that
the table is between one-eighth and one-half full, linear probing uses between 4N and
16N references. Thus, choosing hashing on the basis of memory usage is not normally
justified. The calculation is a bit different for primitive types (see Exercise 3.4.24)

method space usage for N items
(reference types)

separate chaining ~ 48 N + 64 M

linear probing between
~32 N and ~128 N

BSTs ~56 N

 Space usage in symbol tables

476 CHAPTER 3 ■ Searching

Since the earliest days of computing, researchers have studied (and are study-
ing) hashing and have found many ways to improve the basic algorithms that we have
discussed. You can find a huge literature on the subject. Most of the improvements
push down the space-time curve: you can get the same running time for searches using
less space or get faster searches using the same amount of space. Other improvements
involve better guarantees, on the expected worst-case cost of a search. Others involve
improved hash-function designs. Some of these methods are addressed in the exercises.

Detailed comparison of separate chaining and linear probing depends on myriad
implementation details and on client space and time requirements. It is not normally
justified to choose separate chaining over linear probing on the basis of performance
(see Exercise 3.5.31). In practice, the primary performance difference between the two
methods has to do with the fact that separate chaining uses a small block of memory
for each key-value pair, while linear probing uses two large arrays for the whole table.
For huge tables, these needs place quite different burdens on the memory management
system. In modern systems, this sort of tradeoff is best addressed by experts in extreme
performance-critical situations.

With hashing, under generous assumptions, it is not unreasonable to expect to
support the search and insert symbol-table operations in constant time, independent
of the size of the table. This expectation is the theoretical optimum performance for
any symbol-table implementation. Still, hashing is not a panacea, for several reasons,
including:

■ A good hash function for each type of key is required.
■ The performance guarantee depends on the quality of the hash function.
■ Hash functions can be difficult and expensive to compute.
■ Ordered symbol-table operations are not easily supported.

Beyond these basic considerations, we defer the comparison of hashing with the other
symbol-table methods that we have studied to the beginning of Section 3.5.

4773.4 ■ Hash Tables

Q&A

Q. How does Java implement hashCode() for Integer, Double, and Long?

A. For Integer it just returns the 32-bit value. For Double and Long it returns the ex-
clusive or of the first 32 bits with the second 32 bits of the standard machine representa-
tion of the number. These choices may not seem to be very
random, but they do serve the purpose of spreading out the
values.

 Q. When using array resizing, the size of the table is always
a power of 2. Isn’t that a potential problem, because it only
uses the least significant bits of hashCode()?

A. Yes, particularly with the default implementations. One
way to address this problem is to first distribute the key val-
ues using a prime larger than M, as in the following example:

private int hash(Key x)
{
 int t = x.hashCode() & 0x7fffffff;
 if (lgM < 26) t = t % primes[lgM+5];
 return t % M;
}

This code assumes that we maintain an instance variable
lgM that is equal to lg M (by initializing to the appropri-
ate value, incrementing when doubling, and decrementing
when halving) and an array primes[] of the smallest prime
greater than each power of 2 (see the table at right). The
constant 5 is an arbitrary choice—we expect the first % to
distribute the values equally among the values less than the
prime and the second to map about five of those values to
each value less than M. Note that the point is moot for large
M.

Q. I’ve forgotten. Why don’t we implement hash(x) by returning x.hashCode() % M?

A. We need a result between 0 and M-1, but in Java, the % function may be negative.

Q. So, why not implement hash(x) by returning Math.abs(x.hashcode()) % M?

Primes for hash table sizes

k �k (2k − �k)

 5 1 31
 6 3 61
 7 1 127
 8 5 251
 9 3 509
10 3 1021
11 9 2039
12 3 4093
13 1 8191
14 3 16381
15 19 32749
16 15 65521
17 1 131071
18 5 262139
19 1 524287
20 3 1048573
21 9 2097143
22 3 4194301
23 15 8388593
24 3 16777213
25 39 33554393
26 5 67108859
27 39 134217689
28 57 268435399
29 3 536870909
30 35 1073741789
31 1 2147483647

primes[k]

478 CHAPTER 3 ■ Searching

A. Nice try. Unfortunately, Math.abs() returns a negative result for the largest nega-
tive number. For many typical calculations, this overflow presents no real problem,
but for hashing it would leave you with a program that is likely to crash after a few bil-
lion inserts, an unsettling possibility. For example, s.hashCode() is �231 for the Java
String value "polygenelubricants". Finding other strings that hash to this value
(and to 0) has turned into an amusing algorithm-puzzle pastime.

Q. Why not use BinarySearchST or RedBlackBST instead of SequentialSearchST in
Algorithm 3.5?

A. Generally, we set parameters so as to make the number of keys hashing to each value
small, and elementary symbol tables are generally better for the small tables. In certain
situations, slight performance gains may be achieved with such hybrid methods, but
such tuning is best left for experts.

Q. Is hashing faster than searching in red-black BSTs?

A. It depends on the type of the key, which determines the cost of computing
hashCode() versus the cost of compareTo(). For typical key types and for Java default
implementations, these costs are similar, so hashing will be significantly faster, since it
uses only a constant number of operations. But it is important to remember that this
question is moot if you need ordered operations, which are not efficiently supported in
hash tables. See Section 3.5 for further discussion.

Q. Why not let the linear probing table get, say, three-quarters full?

A. No particular reason. You can choose any value of �, using Proposition M to esti-
mate search costs. For � = 3/4, the average cost of search hits is 2.5 and search misses is
8.5, but if you let � grow to 7/8, the average cost of a search miss is 32.5, perhaps more
than you want to pay. As � gets close to 1, the estimate in Proposition M becomes in-
valid, but you don’t want your table to get that close to being full.

4793.4 ■ Hash Tables

EXERCISES

3.4.1 Insert the keys E A S Y Q U T I O N in that order into an initially empty table
of M = 5 lists, using separate chaining. Use the hash function 11 k % M to transform
the kth letter of the alphabet into a table index.

3.4.2 Develop an alternate implementation of SeparateChainingHashST that directly
uses the linked-list code from SequentialSearchST.

3.4.3 Modify your implementation of the previous exercise to include an integer field
for each key-value pair that is set to the number of entries in the table at the time that
pair is inserted. Then implement a method that deletes all keys (and associated values)
for which the field is greater than a given integer k. Note : This extra functionality is use-
ful in implementing the symbol table for a compiler.

3.4.4 Write a program to find values of a and M, with M as small as possible, such that
the hash function (a * k) % M for transforming the kth letter of the alphabet into a
table index produces distinct values (no collisions) for the keys S E A R C H X M P L.
The result is known as a perfect hash function.

3.4.5 Is the following implementation of hashCode() legal?

public int hashCode()
{ return 17; }

If so, describe the effect of using it. If not, explain why.

3.4.6 Suppose that keys are t-bit integers. For a modular hash function with prime M,
prove that each key bit has the property that there exist two keys differing only in that
bit that have different hash values.

3.4.7 Consider the idea of implementing modular hashing for integer keys with the
code (a * k) % M , where a is an arbitrary fixed prime. Does this change mix up the
bits sufficiently well that you can use nonprime M?

3.4.8 How many empty lists do you expect to see when you insert N keys into a hash
table with SeparateChainingHashST, for N=10, 102, 103, 104, 105, and 106? Hint : See
Exercise 2.5.31.

3.4.9 Implement an eager delete() method for SeparateChainingHashST.

3.4.10 Insert the keys E A S Y Q U T I O N in that order into an initially empty table

480 CHAPTER 3 ■ Searching

of size M =16 using linear probing. Use the hash function 11 k % M to transform the
kth letter of the alphabet into a table index. Redo this exercise for M = 10.

3.4.11 Give the contents of a linear-probing hash table that results when you insert the
keys E A S Y Q U T I O N in that order into an initially empty table of initial size M
= 4 that is expanded with doubling whenever half full. Use the hash function 11 k % M
to transform the kth letter of the alphabet into a table index.

3.4.12 Suppose that the keys A through G, with the hash values given below, are inserted
in some order into an initially empty table of size 7 using a linear-probing table (with
no resizing for this problem). Which of the following could not possibly result from
inserting these keys?

a. E F G A C B D
b. C E B G F D A
c. B D F A C E G
d. C G B A D E F
e. F G B D A C E
f. G E C A D B F

Give the minimum and the maximum number of probes that could be required to
build a table of size 7 with these keys, and an insertion order that justifies your answer.

3.4.13 Which of the following scenarios leads to expected linear running time for a
random search hit in a linear-probing hash table?

a. All keys hash to the same index.
b. All keys hash to different indices.
c. All keys hash to an even-numbered index.
d. All keys hash to different even-numbered indices.

3.4.14 Answer the previous question for search miss, assuming the search key is equally
likely to hash to each table position.

3.4.15 How many compares could it take, in the worst case, to insert N keys into an
initially empty table, using linear probing with array resizing?

3.4.16 Suppose that a linear-probing table of size 106 is half full, with occupied posi-
tions chosen at random. Estimate the probability that all positions with indices divisible

4813.4 ■ Hash Tables

by 100 are occupied.

3.4.17 Show the result of using the delete() method on page 471 to delete C from the
table resulting from using LinearProbingHashST with our standard indexing client
(shown on page 469).

3.4.18 Add a constructor to SeparateChainingHashST that gives the client the ability
to specify the average number of probes to be tolerated for searches. Use array resizing
to keep the average list size less than the specified value, and use the technique described
on page 478 to ensure that the modulus for hash() is prime.

3.4.19 Implement keys() for SeparateChainingHashST and LinearProbingHashST.

3.4.20 Add a method to LinearProbingHashST that computes the average cost of a
search hit in the table, assuming that each key in the table is equally likely to be sought.

3.4.21 Add a method to LinearProbingHashST that computes the average cost of a
search miss in the table, assuming a random hash function. Note : You do not have to
compute any hash functions to solve this problem.

3.4.22 Implement hashCode() for various types: Point2D, Interval, Interval2D,
and Date.

3.4.23 Consider modular hashing for string keys with R = 256 and M = 255. Show
that this is a bad choice because any permutation of letters within a string hashes to the
same value.

3.4.24 Analyze the space usage of separate chaining, linear probing, and BSTs for
double keys. Present your results in a table like the one on page 476.

EXERCISES (continued)

482 CHAPTER 3 ■ Searching

CREATIVE PROBLEMS

3.4.25 Hash cache. Modify Transaction on page 462 to maintain an instance variable
hash, so that hashCode() can save the hash value the first time it is called for each object
and does not have to recompute it on subsequent calls. Note : This idea works only for
immutable types.

3.4.26 Lazy delete for linear probing. Add to LinearProbingHashST a delete()
method that deletes a key-value pair by setting the value to null (but not removing
the key) and later removing the pair from the table in resize(). Your primary chal-
lenge is to decide when to call resize(). Note : You should overwrite the null value if
a subsequent put() operation associates a new value with the key. Make sure that your
program takes into account the number of such tombstone items, as well as the number
of empty positions, in making the decision whether to expand or contract the table.

3.4.27 Double probing. Modify SeparateChainingHashST to use a second hash func-
tion and pick the shorter of the two lists. Give a trace of the process of inserting the keys
E A S Y Q U T I O N in that order into an initially empty table of size M =3 using
the function 11 k % M (for the kth letter) as the first hash function and the function
17 k % M (for the kth letter) as the second hash function. Give the average number of
probes for random search hit and search miss in this table.

3.4.28 Double hashing. Modify LinearProbingHashST to use a second hash function
to define the probe sequence. Specifically, replace (i + 1) % M (both occurrences) by
(i + k) % M where k is a nonzero key-dependent integer that is relatively prime to M.
Note : You may meet the last condition by assuming that M is prime. Give a trace of the
process of inserting the keys E A S Y Q U T I O N in that order into an initially empty
table of size M =11, using the hash functions described in the previous exercise. Give
the average number of probes for random search hit and search miss in this table.

3.4.29 Deletion. Implement an eager delete() method for the methods described in
each of the previous two exercises.

3.4.30 Chi-square statistic. Add a method to SeparateChainingST to compute the � 2

statistic for the hash table. With N keys and table size M, this number is defined by the
equation

� 2
 = (M/N) ((f0 � N/M)2 + (f1 � N/M)2 � . . . (fM � 1� N/M)2)

4833.4 ■ Hash Tables

where fi is the number of keys with hash value i. This statistic is one way of checking our
assumption that the hash function produces random values. If so, this statistic, for N >
cM, should be between M � � M and M + � M with probability 1 � 1/c.

3.4.31 Cuckoo hashing. Develop a symbol-table implementation that maintains two
hash tables and two hash functions. Any given key is in one of the tables, but not both.
When inserting a new key, hash to one of the tables; if the table position is occupied,
replace that key with the new key and hash the old key into the other table (again kick-
ing out a key that might reside there). If this process cycles, restart. Keep the tables less
than half full. This method uses a constant number of equality tests in the worst case
for search (trivial) and amortized constant time for insert.

3.4.32 Hash attack. Find 2N strings, each of length 2N, that have the same hashCode()
value, supposing that the hashCode() implementation for String is the following:

public int hashCode()
{
 int hash = 0;
 for (int i = 0; i < length(); i ++)
 hash = (hash * 31) + charAt(i);
 return hash;
}

Strong hint : Aa and BB have the same value.

3.4.33 Bad hash function. Consider the following hashCode() implementation for
String, which was used in early versions of Java:

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length()/8);
 for (int i = 0; i < length(); i += skip)
 hash = (hash * 37) + charAt(i);
 return hash;
}

Explain why you think the designers chose this implementation and then why you
think it was abandoned in favor of the one in the previous exercise.

CREATIVE PROBLEMS (continued)

484 CHAPTER 3 ■ Searching

EXPERIMENTS

3.4.34 Hash cost. Determine empirically the ratio of the time required for hash()
to the time required for compareTo(), for as many commonly-used types of keys for
which you can get meaningful results.

3.4.35 Chi-square test. Use your solution from Exercise 3.4.30 to check the assump-
tion that the hash functions for commonly-used key types produce random values.

3.4.36 List length range. Write a program that inserts N random int keys into a table
of size N / 100 using separate chaining, then finds the length of the shortest and longest
lists, for N = 10 3, 10 4, 10 5, 10 6.

3.4.37 Hybrid. Run experimental studies to determine the effect of using RedBlackBST
instead of SequentialSearchST to handle collisions in SeparateChainingHashST.
This solution carries the advantage of guaranteeing logarithmic performance even for
a bad hash function and the disadvantage of necessitating maintenance of two different
symbol-table implementations. What are the practical effects?

3.4.38 Separate-chaining distribution. Write a program that inserts 10 5 random non-
negative integers less than 10 6 into a table of size 10 5 using linear probing, and that
plots the total number of probes used for each 10 3 consecutive insertions. Discuss the
extent to which your results validate Proposition K.

3.4.39 Linear-probing distribution. Write a program that inserts N/2 random int keys
into a table of size N using linear probing, then computes the average cost of a search
miss in the resulting table from the cluster lengths, for N = 10 3, 10 4, 10 5, 10 6. Discuss
the extent to which your results validate Proposition M.

3.4.40 Plots. Instrument LinearProbingHashST and SeparateChainingHashST to
produce plots like the ones shown in the text.

3.4.41 Double probing. Run experimental studies to evaluate the effectiveness of dou-
ble probing (see Exercise 3.4.27).

3.4.42 Double hashing. Run experimental studies to evaluate the effectiveness of dou-
ble hashing (see Exercise 3.4.28).

3.4.43 Parking problem. (D. Knuth) Run experimental studies to validate the hypoth-
esis that the number of compares needed to insert M random keys into a linear-probing
table of size M is ~cM 3/2, where c = ��/2.

4853.4 ■ Hash Tables

