
3.4    HASH TABLES

If keys are small integers, we can use an array to implement an unordered symbol table, 
by interpreting the key as an array index so that we can store the value associated with 
key i in array entry i, ready for immediate access.  In this section, we consider hashing, 
an extension of this simple method that handles more complicated types of keys. We 
reference key-value pairs using arrays by doing arithmetic operations to transform keys 
into array indices.

Search algorithms that use hashing consist of two separate parts. The first part is to 
compute a    hash function that transforms the search key into an array index.  Ideally, 

different keys would map to different indices. This ideal is gener-
ally beyond our reach, so we have to face the possibility that two 
or more different keys may hash to the same array index. Thus, 
the second part of a hashing search is a   collision-resolution process 
that deals with this situation. After describing ways to compute 
hash functions, we shall consider two different approaches to col-
lision resolution: separate chaining and linear probing. 

Hashing is a classic example of a  time-space tradeoff. If there 
were no memory limitation, then we could do any search with 
only one memory access by simply using the key as an index in 
a (potentially huge) array.  This ideal often cannot be achieved, 
however, because the amount of memory required is prohibitive 
when the number of possible key values is huge.  On the other 
hand, if there were no time limitation, then we can get by with 
only a minimum amount of memory by using sequential search 
in an unordered array. Hashing provides a way to use a reasonable 
amount of both memory and time to strike a balance between 
these two extremes. Indeed, it turns out that we can trade off time 

and memory in hashing algorithms by adjusting parameters, not by rewriting code. To 
help choose values of the parameters, we use classical results from probability theory.

Probability theory is a triumph of mathematical analysis that is beyond the scope of 
this book, but the hashing algorithms we consider that take advantage of the knowl-
edge gained from that theory are quite simple, and widely used. With hashing, you can 
implement search and insert for symbol tables that require constant (amortized) time 
per operation in typical applications, making it the method of choice for implementing 
basic symbol tables in many situations.
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  Hash functions The first problem that we face is the computation of the hash 
function, which transforms keys into array indices. If we have an array that can hold 
M key-value pairs, then we need a hash function that can transform any given key into 
an index into that array: an integer in the range [0, M – 1]. We seek a hash function 
that both is easy to compute and uniformly distributes the keys: for each key, every 
integer between 0 and M – 1 should be equally likely (independently for 
every key). This ideal is somewhat mysterious; to understand hashing, 
it is worthwhile to begin by thinking carefully about how to implement 
such a function.

The hash function depends on the key type.  Strictly speaking, we need 
a different hash function for each key type that we use. If the key involves a 
number, such as a social security number, we could start with that num-
ber; if the key involves a string, such as a person’s name, we need to con-
vert the string into a number; and if the key has multiple parts, such as   
a mailing address, we need to combine the parts somehow. For many 
common types of keys, we can make use of default implementations pro-
vided by Java. We briefly discuss potential implementations for various 
types of keys so that you can see what is involved because you do need to 
provide implementations for key types that you create. 

Typical example. Suppose that we have an application where the keys 
are U.S. social security numbers. A social security number such as 
123-45-6789 is a nine-digit number divided into three fields. The first 
field identifies the geographical area where the number was issued (for 
example, social security numbers whose first field is 035 are from Rhode 
Island and numbers whose first field is 214 are from Maryland) and the 
other two fields identify the individual. There are a billion (109) different 
social security numbers, but suppose that our application will need to 
process just a few hundred keys, so that we could use a hash table of size 
M = 1,000. One possible approach to implementing a hash function is 
to use three digits from the key. Using three digits from the third field is 
likely to be preferable to using the three digits in the first field (since customers may not 
be uniformly dispersed over geographic areas), but a better approach is to use all nine 
digits to make an int value, then consider hash functions for integers, described next.

Positive integers. The most commonly used method for hashing integers is called 
   modular hashing  : we choose the array size M to be prime and, for any positive inte-
ger key k, compute the remainder when dividing k by M. This function is very easy to 
compute (k % M, in Java) and is effective in dispersing the keys evenly between 0 and 

212     12      18
618     18      36
302      2      11
940     40      67
702      2      23
704      4      25
612     12      30
606      6      24
772     72      93
510     10      25
423     23      35
650     50      68
317     17      26
907      7      34
507      7      22
304      4      13
714     14      35
857     57      81
801      1      25
900      0      27
413     13      25
701      1      22
418     18      30
601      1      19

key hash
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hash
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M – 1. If M is not prime, it may be the case that not all of the bits of the key play a role, 
which amounts to missing an opportunity to disperse the values evenly. For example, 
if the keys are base-10 numbers and M is 10 k, then only the k least significant digits are 
used. As a simple example where such a choice might be problematic, suppose that the 
keys are telephone area codes and M = 100. For historical reasons, most area codes in 
the United States have middle digit 0 or 1, so this choice strongly favors the values less 
than 20, where the use of the prime value 97 better disperses them (a prime value not 
close to 100 would do even better). Similarly, IP addresses that are used in the internet 
are binary numbers that are not random for similar historical reasons as for telephone 
area codes, so we need to use a table size that is a prime (in particular, not a power of 2) 
 if we want to use modular hashing to disperse them. 

Floating-point numbers. If the keys are real numbers between 0 and 1, we might just 
multiply by M and round off to the nearest integer to get an index between 0 and M – 1. 
Although this approach is intuitive, it is defective because it gives more weight to the 
most significant bits of the keys; the least significant bits play no role. One way to ad-
dress this situation is to use modular hashing on the binary representation of the key 
(this is what Java does).

Strings. Modular hashing works for long keys such as strings, too: we simply treat 
them as huge integers.  For example, the code at left computes a modular hash func-
tion for a String s: recall that charAt() returns a char value in Java, which is a 16-bit 
nonnegative integer. If R is greater than any character value, this computation would 

be equivalent to treating the String as 
an N-digit base-R integer, computing the 
remainder that results when dividing that 
number by M. A classic algorithm known 
as  Horner’s method gets the job done with 
N multiplications, additions, and modulus 
operations. If the value of R is sufficiently 

small that no overflow occurs, the result is an integer between 0 and M – 1, as desired. 
The use of a small prime integer such as 31 ensures that the bits of all the characters 
play a role. Java’s default implementation for String uses a method like this.

 Compound keys. If the key type has multiple integer fields, we can typically mix them 
together in the way just described for String values. For example, suppose that search 
keys are of type Date, which has three integer fields: day (two-digit day), month (two-
digit month), and year (four-digit year).We compute the number

int hash = (((day * R + month) % M ) * R + year) % M;

int hash = 0; 
for (int i = 0; i < s.length(); i++)
   hash = (R * hash + s.charAt(i)) % M;

 Hashing a string key
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which, if the value of R is sufficiently small that no overflow occurs, is an integer be-
tween 0 and M – 1, as desired. In this case, we could save the cost of the inner % M opera-
tion by choosing a moderate prime value such as 31 for R. As with strings, this method 
generalizes to handle any number of fields. 

 Java conventions. Java helps us address the basic problem that every type of data needs 
a hash function by ensuring that every data type inherits a method called hashCode()
that returns a 32-bit integer. The implementation of  hashCode() for a data type must 
be consistent with equals. That is, if a.equals(b) is true, then a.hashCode() must have 
the same numerical value as b.hashCode(). Conversely, if the hashCode() values are 
different, then we know that the objects are not equal. If the hashCode() values are 
the same, the objects may or may not be equal, and we must use equals() to decide 
which condition holds. This convention is a basic requirement for clients to be able to 
use hashCode() for symbol tables. Note that it implies that you must override both 
hashCode() and equals() if you need to hash with a user-defined type. The default 
implementation returns the machine address of the key object, which is seldom what 
you want. Java provides hashCode() implementations that override the defaults for 
many common types (including String, Integer, Double, File, and URL).

Converting a hashCode() to an array index. Since our goal is an array index, not a 
32-bit integer, we combine hashCode() with modular hashing in our implementations 
to produce integers between 0 and M – 1, as follows:

private int hash(Key x) 
{  return (x.hashCode() & 0x7fffffff) % M;  } 

This code masks off the sign bit (to turn the 32-bit number into a 31-bit nonnegative 
integer) and then computes the remainder when dividing by M, as in modular hashing. 
Programmers commonly use a prime number for the hash table size M when using code 
like this, to attempt to make use of all the 
bits of the hash code. Note: To avoid con-
fusion, we omit all of these calculations in 
our hashing examples and use instead the 
hash values in the table at right. 

User-defined hashCode(). Client code expects that hashCode() disperses the keys 
uniformly among the possible 32-bit result values. That is, for any object x, you can 
write x.hashCode() and, in principle, expect to get any one of the 232 possible 32-bit 
values with equal likelihood. Java’s hashCode() implementations for String, Integer, 
Double, File, and URL aspire to this functionality; for your own type, you have to 
try to do it on your own. The Date example that we considered on page 460 illustrates 

 Hash values for keys in examples
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one way to proceed: make integers from 
the instance variables and use modular 
hashing. In Java, the convention that all 
data types inherit a hashCode() method 
enables an even simpler approach: use the 
hashCode() method for the instance vari-
ables to convert each to a 32-bit int value 
and then do the arithmetic, as illustrated 
at left for Transaction. For primitive-
type instance variables, note that a cast to 
a wrapper type is necessary to access the 
hashCode() method. Again, the precise 
values of the multiplier (31 in our exam-
ple) is not particularly important.

Software  caching. If computing the hash 
code is expensive, it may be worthwhile to 

cache the hash for each key. That is, we maintain an instance variable hash in the key 
type that contains the value of hashCode() for each key object (see Exercise 3.4.25).
On the first call to hashCode(), we have to compute the full hash code (and set the val-
ue of hash), but subsequent calls on hashCode() simply return the value of hash. Java 
uses this technique to reduce the cost of computing hashCode() for String objects.

In summary, we have three primary requirements in implementing a good hash
function for a given data type:

■ It should be consistent—equal keys must produce the same hash value.
■ It should be efficient to compute.
■ It should uniformly distribute the keys.

Satisfying these requirements simultaneously is a job for experts. As with many built-in 
capabilities, Java programmers who use hashing assume that hashCode() does the job, 
absent any evidence to the contrary.

Still, you should be vigilant whenever using hashing in situations where good perfor-
mance is critical, because a bad hash function is a classic example of a performance bug: 
everything will work properly, but much more slowly than expected. Perhaps the easiest 
way to ensure uniformity is to make sure that all the bits of the key play an equal role in 
computing every hash value; perhaps the most common mistake in implementing hash 
functions is to ignore significant numbers of the key bits. Whatever the implementa-
tion, it is wise to test any hash function that you use, when performance is important. 
Which takes more time: computing a hash function or comparing two keys? Does your 

public class  Transaction 
{
   ...
   private final String who;
   private final Date when;
   private final double amount;

   public int hashCode()
   {

int hash = 17;
hash = 31 * hash + who.hashCode();
hash = 31 * hash + when.hashCode(); 
hash = 31 * hash

+ ((Double) amount).hashCode();
return hash;

   }
   ... 
}

 Implementing hashCode() in a user-defined type
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hash function spread a typical set of keys uniformly among the values between 0 and 
M – 1? Doing simple experiments that answer these questions can protect future clients 
from unfortunate surprises. For example, the histogram above shows that our hash()
implementation using the hashCode() from Java’s String data type produces a rea-
sonable dispersion of the words for our Tale of Two Cities example. 

Underlying this discussion is a fundamental assumption that we make when using 
hashing, an idealized model that we do not actually expect to achieve, but that guides 
our thinking when implementing hashing algorithms:

Assumption J (  uniform hashing assumption). The hash functions that we use uni-
formly and independently distribute keys among the integer values between 0 and 
M – 1.

Discussion: With all of the arbitrary choices that we have made, we certainly do not 
have hash functions that uniformly and independently distribute keys in this strict 
mathematical sense. Indeed, the idea of implementing consistent functions that are 
guaranteed to uniformly and independently distribute keys leads to deep theoreti-
cal studies that tell us that computing such a function easily is likely to be a very 
elusive goal. In practice, as with random numbers generated by Math.random(), 
most programmers are content to have hash functions that cannot easily be distin-
guished from random ones. Few programmers check for independence, however, 
and this property is rarely satisfied.

Despite the difficulty of validating it, Assumption J is a useful way to think
about hashing for two primary reasons. First, it is a worthy goal when designing hash 
functions that guides us away from making arbitrary decisions that might lead to an 
excessive number of collisions. Second, even though we may not be able to validate the 
assumption itself, it does enable us to use mathematical analysis to develop hypotheses 
about the performance of hashing algorithms that we can check with experiments.

Hash value frequencies for words in Tale of Two Cities (10,679 keys, M = 97)
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Hashing with    separate chaining A hash function converts keys into array in-
dices. The second component of a hashing algorithm is collision resolution: a strategy 
for handling the case when two or more keys to be inserted hash to the same index. A 
straightforward and general approach to collision resolution is to build, for each of the 
M array indices, a linked list of the key-value pairs whose keys hash to that index. This 
method is known as separate chaining because items that collide are chained together 
in separate linked lists. The basic idea is to choose M to be sufficiently large that the lists 
are sufficiently short to enable efficient search through a two-step process: hash to find 
the list that could contain the key, then sequentially search through that list for the key.

One way to proceed is to ex-
pand SequentialSearchST (Al-
gorithm 3.1) to implement sep-
arate chaining using linked-list
primitives (see Exercise 3.4.2).
A simpler (though slightly less 
efficient) way to proceed is to 
adopt a more general approach: 
we build, for each of the M ar-
ray indices, a symbol table of the 
keys that hash to that index, thus 
reusing code that we have already 
developed. The implementa-
tion SeparateChainingHashST

in Algorithm 3.5 maintains an
array of SequentialSearchST 
objects and implements get()
and put() by computing a 
hash function to choose which 

SequentialSearchST object can contain the key and then using get() and put() (re-
spectively) from SequentialSearchST to complete the job. 

Since we have M lists and N keys, the average length of the lists is always N 
 M, no 
matter how the keys are distributed among the lists. For example, suppose that all the 
items fall onto the first list—the average length of the lists is (N + 0 + 0 + 0 +. . . + 0)/M =  
N 
 M. However the keys are distributed on the lists, the sum of the list lengths is N and 
the average is N 
 M. Separate chaining is useful in practice because each list is extremely 
likely to have about N 
 M key-value pairs. In typical situations, we can verify this con-
sequence of Assumption J and count on fast search and insert.

Hashing with separate chaining for standard indexing client 
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ALGORITHM 3.5  Hashing with separate chaining

public class  SeparateChainingHashST<Key, Value> 
{
   private int N; // number of key-value pairs
   private int M; // hash table size
   private SequentialSearchST<Key, Value>[] st;  // array of ST objects

   public SeparateChainingHashST()
   {  this(997);  }

   public SeparateChainingHashST(int M)
   {  // Create M linked lists.

this.M = M;
st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
for (int i = 0; i < M; i++)

st[i] = new SequentialSearchST();
   }

   private int hash(Key key)
   {  return (key.hashCode() & 0x7fffffff) % M; }

   public Value get(Key key)
   {  return (Value) st[hash(key)].get(key);  }

   public void put(Key key, Value val)
   {  st[hash(key)].put(key, val);  }

   public Iterable<Key> keys()
   // See Exercise 3.4.19.

}

This basic symbol-table implementation maintains an array of linked lists, using a hash function to 
choose a list for each key. For simplicity, we use SequentialSearchST methods. We need a cast when 
creating st[] because Java prohibits arrays with generics. The default constructor specifies 997 lists, 
so that for large tables, this code is about a factor of 1,000 faster than SequentialSearchST. This 
quick solution is an easy way to get good performance when you have some idea of the number of 
key-value pairs to be put() by a client. A more robust solution is to use array resizing to make sure 
that the lists are short no matter how many key-value pairs are in the table (see page 474 and Exercise 
3.4.18).
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Proposition K. In  a separate-chaining hash table with M lists and N keys, the prob-
ability (under Assumption J) that the number of keys in a list is within a small
constant factor of N/M is extremely close to 1.

Proof sketch: Assumption J makes this an application of classical probability
theory. We sketch the proof, for readers who are familiar with basic probabilistic 
analysis. The probability that a given list will contain exactly k keys is given by the 
binomial distribution

N
k

1
M

M − 1
M

k N − k

by the following argument: Choose k out of the N keys. Those k keys hash to the 
given list with probability 1 
 M, and the other N – k keys do not hash to the given 
list with probability 1 – (1 
 M ). In terms of � � N 
 M,  we can rewrite this expres-
sion as

N 
k N N

k N − k

1 − 

 

which (for small �) is closely
approximated by the classical
 Poisson distribution

ke 
k!

It follows that the probability that a list has more than t � keys on it is bounded 
by the quantity (� e/t)t e –�. This probability is extremely small for practical ranges 
of the parameters. For example, if the average length of the lists is 10, the prob-
ability that we will hash to some list with more than 20 keys on it is less than (10 
e/2)2 e –10 � 0.0084, and if the average length of the lists is 20, the probability that 
we will hash to some list with more than 40 keys on it is less than (20 e/2)2 e –20 

 0.0000016. This concentration result does not guarantee that every list will be 
short. Indeed it is known that, if � is a constant, the average length of the longest 
list grows with log N / log log N. 
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This classical mathematical analysis is compelling, but it is important to note that 
it completely depends on Assumption J. If the hash function is not uniform and inde-
pendent, the search and insert cost could be proportional to N, no better than with 
sequential search. Assumption J is much stronger than the corresponding assumption
for other probabilistic algorithms that we have seen, and much more difficult to verify. 
With hashing, we are assuming that each and every key, no matter how complex, is 
equally likely to be hashed to one of M indices. We cannot afford to run experiments 
to test every possible key, so we would have to do more sophisticated experiments in-
volving random sampling from the set of possible keys used in an application, followed 
by statistical analysis. Better still, we can use the algorithm itself as part of the test, to 
validate both Assumption J and the mathematical results that we derive from it.

Property L. In a  separate-chaining hash table with M lists and N keys, the number 
of compares (equality tests) for search miss and insert is ~N/M.

Evidence: Good performance of the algorithms in practice does not require the 
hash function to be fully uniform in the technical sense of Assumption J. Count-
less programmers since the 1950s have seen the speedups predicted by Proposi-
tion K, even for hash functions that are certainly not uniform. For example, the
diagram on page 468 shows that list length distribution for our FrequencyCounter 
example (using our hash() implementation based on the hashCode() from Java’s 
String data type) precisely matches the theoretical model. One exception that has 
been documented on numerous occasions is poor performance due to hash func-
tions not taking all of the bits of the keys into account. Otherwise, the preponder-
ance of the evidence from the experience of practical programmers puts us on 
solid ground in stating that hashing with separate chaining using an array of size M
speeds up search and insert in a symbol table by a factor of M.

Table size. In a separate-chaining implementation, our goal is to choose the table size  
M to be sufficiently small that we do not waste a huge area of contiguous memory 
with empty chains but sufficiently large that we do not waste time searching through 
long chains. One of the virtues of separate chaining is that this decision is not critical: 
if more keys arrive than expected, then searches will take a little longer than if we had 
chosen a bigger table size ahead of time; if fewer keys are in the table, then we have ex-
tra-fast search with some wasted space. When space is not a critical resource, M can be 
chosen sufficiently large that search time is constant; when space is a critical resource, 
we still can get a factor of M improvement in performance by choosing M to be as 
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large as we can afford. For our example FrequencyCounter study, we see in the figure 
below a reduction in the average cost from thousands of compares per operation for 
SequentialSearchST to a small constant for SeparateChainingHashST, as expected. 
Another option is to use array resizing to keep the lists short (see Exercise 3.4.18).

 Deletion. To delete a key-value pair, simply hash to find the SequentialSearchST
containing the key, then invoke the delete() method for that table (see Exercise 
3.1.5). Reusing code in this way is preferable to reimplementing this basic operation
on linked lists.

Ordered operations. The whole point of hashing is to uniformly disperse the keys, so 
any order in the keys is lost when hashing. If you need to quickly find the maximum 
or minimum key, find keys in a given range, or implement any of the other operations 
in the ordered symbol-table API on page 366, then hashing is not appropriate, since these 
operations will all take linear time.

Hashing with separate chaining is easy to implement and probably the fastest (and
most widely used) symbol-table implementation for applications where key order is 
not important. When your keys are built-in Java types or your own type with well-
tested implementations of hashCode(), Algorithm 3.5 provides a quick and easy path
to fast search and insert. Next, we consider an alternative scheme for collision resolu-
tion that is also effective.
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 Hashing with    linear probing Another approach to implementing hashing is to 
store N key-value pairs in a hash table of size M > N, relying on empty entries in the 
table to help with collision resolution. Such methods are called open-addressing hashing 
methods.

The simplest open-addressing method is called linear probing: when there is a colli-
sion (when we hash to a table index that is already occupied with a key different from 
the search key), then we just check the next entry in the table (by incrementing the 
index). Linear probing is characterized by identifying three possible outcomes:

■ Key equal to search key: search hit
■ Empty position (null key at indexed position): search miss
■ Key not equal to search key: try next entry 

We hash the key to a table index, check whether the search key matches the key there, 
and continue (incrementing the index, wrapping back to the beginning of the table 
if we reach the end) until finding either the search key or an empty table entry. It is 
customary to refer to the operation of determining whether or not a given table entry 
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ALGORITHM 3.6  Hashing with linear probing

public class  LinearProbingHashST<Key, Value> 
{
   private int N;         // number of key-value pairs in the table
   private int M = 16;    // size of linear-probing table                
   private Key[] keys;    // the keys                                      
   private Value[] vals;  // the values                       

   public LinearProbingHashST()
   {
      keys = (Key[])   new Object[M];
      vals = (Value[]) new Object[M];
   }

   private int hash(Key key)
   {  return (key.hashCode() & 0x7fffffff) % M; }

   private void resize()        // See page 474.

   public void put(Key key, Value val)
   {
      if (N >= M/2) resize(2*M);  // double M (see text)

      int i;
      for (i = hash(key); keys[i] != null; i = (i + 1) % M)
         if (keys[i].equals(key)) { vals[i] = val; return; }
      keys[i] = key;
      vals[i] = val;
       N++;
   }

   public Value get(Key key)
   {
      for (int i = hash(key); keys[i] != null; i = (i + 1) % M)
         if (keys[i].equals(key))
             return vals[i];
      return null;
   } 
}

 

This symbol-table implementation keeps keys and values in parallel arrays (as in BinarySearchST) 
but uses empty spaces (marked by null) to terminate clusters of keys. If a new key hashes to an empty 
entry, it is stored there; if not, we scan sequentially to find an empty position. To search for a key, we 
scan sequentially starting at its hash index until finding null (search miss) or the key (search hit). 
Implementation of keys() is left as Exercise 3.4.19.
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holds an item whose key is equal to the search key as a  probe. We use the term inter-
changeably with the term compare that we have been using, even though some probes 
are tests for null. 

The essential idea behind hashing with open addressing is this: rather than using mem-
ory space for references in linked lists, we use it for the empty entries in the hash table, 
which mark the ends of probe sequences. As you can see from LinearProbingHashST
(Algorithm 3.6), applying this idea to implement the symbol-table API is quite 
straightforward. We implement the table with  parallel arrays, one for the keys and one 
for the values, and use the hash function as an index to access the data as just discussed.

Deletion. How do we delete a key-value pair from a linear-probing table? If you think 
about the situation for a moment, you will see that setting the key’s table position to 
null will not work, because that might prematurely terminate the search for a key that 
was inserted into the table later. As an example, suppose that we try to delete C in this 
way in our trace example, then search for H. The 
hash value for H is 4, but it sits at the end of the 
cluster, in position 7. If we set position 5 to null, 
then get() will not find H.  As a consequence, we 
need to reinsert into the table all of the keys in the 
cluster to the right of the deleted key. This process 
is trickier than it might seem, so you are encour-
aged to trace through the code at right for an ex-
ample that exercises it (see Exercise 3.4.17).  

As with separate chaining, the performance of 
hashing with open addressing depends on the ratio 

� N 
 M, but we interpret it differently.  We refer 
to � as the    load factor of a hash table. For separate 
chaining, � is the average number of keys per list 
and is generally larger than 1; for linear probing, 

 is the percentage of table entries that are occu-
pied; it cannot be greater than 1. In fact, we cannot 
let the load factor reach 1 (completely full table) 
in LinearProbingHashST because a search miss 
would go into an infinite loop in a full table. In-
deed, for the sake of good performance, we use array resizing to guarantee that the load 
factor is between one-eighth and one-half. This strategy is validated by mathematical 
analysis, which we consider before we discuss implementation details. 

public void delete(Key key) 
{
   if (!contains(key)) return;
   int i = hash(key);
   while (!key.equals(keys[i]))
      i = (i + 1) % M;
   keys[i] = null;
   vals[i] = null;
   i = (i + 1) % M;
   while (keys[i] != null)
   {
      Key   keyToRedo = keys[i];
      Value valToRedo = vals[i];
      keys[i] = null;
      vals[i] = null;
      N--;  
      put(keyToRedo, valToRedo);
      i = (i + 1) % M;
   }
   N--;   
   if (N > 0 N == M/8) resize(M/2); 
}

 Deletion for linear probing
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 Clustering. The average cost of linear probing depends on the way in which the entries 
clump together into contiguous groups of occupied table entries, called clusters, when 

they are inserted. For example, when the key C is inserted 
in our example, the result is a cluster ( A C S ) of length 
3, which means that four probes are needed to insert H
because H hashes to the first position in the cluster. Short 
clusters are certainly a requirement for efficient perfor-
mance. This requirement can be problematic as the table 
fills, because long clusters are common. Moreover, since 
all table positions are equally likely to be the hash value 
of the next key to be inserted (under the uniform hash-
ing assumption), long clusters are more likely to increase 
in length than short ones, because a new key hashing to 
any entry in the cluster will cause the cluster to increase 

in length by 1 (and possibly much more, if there is just one table entry separating the 
cluster from the next one). Next, we turn to the challenge of quantifying the effect of 
clustering to predict performance in linear probing, and using that knowledge to set 
design parameters in our implementations.

Table occupancy patterns (2,048 keys, tables laid out in 128-position rows)

long clusters are common

 = 1/2

 = 1/4

keys[0..127]

keys[8064..8192]

linear probing random

9/64 chance of new key
hitting this cluster

key lands here
in that event

and forms a much
longer cluster

Clustering in linear probing (M = 64)

before

after
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Analysis of linear probing. Despite the relatively simple form of the results, precise 
analysis of linear probing is a very challenging task.  Knuth’s derivation of the following 
formulas in 1962 was a landmark in the analysis of algorithms:

Proposition M. In a linear-probing hash table with M lists and N =  � M keys, the 
average number of probes (under Assumption J) required is

1 
2 1 − 

1
1 +  1 

2 (1 − )2

1
1 +  and~ ~

 

 

for search hits and search misses (or inserts), respectively. In particular, when � 
is about 1/2, the average number of probes for a search hit is about 3/2 and for a 
search miss is about 5/2. These estimates lose a bit of precision as � approaches 1, 
but we do not need them for that case, because we will only use linear probing for 

 less than one-half.

Discussion: We compute the average by computing the cost of a search miss start-
ing at each position in the table, then dividing the total by M.  All search misses 
take at least 1 probe, so we count the number of probes after the first. Consider the 
following two extremes in a linear-probing table that is half full (M = 2N): In the 
best case, table positions with even indices could be empty, and table positions with 
odd indices could be occupied.  In the worst case, the first half of the table positions 
could be empty, and the second half occupied. The average length of the clusters 
in both cases is N/(2N) = 1/2, but the average number of probes for a search miss 
is 1 (all searches take at least 1 probe) plus (0 + 1 + 0 + 1 +.  .  . )/(2 N) = 1/2 in the 
best case, and is 1 plus (N + (N – 1)  + . . .)  
 (2 N) ~ N/4 in the worst case. This 
argument generalizes to show that the average number of probes for a search miss 
is proportional to the squares of the lengths of the clusters: If a cluster is of length t, 
then the expression (t + (t – 1) + .  .  . + 2 + 1) / M = t(t + 1)/(2M) counts the con-
tribution of that cluster to the grand total. The sum of the cluster lengths is N, so, 
adding this cost for all entries in the table, we find that the total average cost for a 
search miss is 1 + N 
 (2M) plus the sum of the squares of the lengths of the clusters, 
divided by 2M.  Thus, given a table, we can quickly compute the average cost of a 
search miss in that table (see Exercise 3.4.21). In general, the clusters are formed 
by a complicated dynamic process (the linear-probing algorithm) that is difficult to 
characterize analytically, and quite beyond the scope of this book. 
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Proposition M tells us (under our usual Assumption J) that we can expect a search to 
require a huge number of probes in a nearly full table (as � approaches 1 the values of 
the formulas describing the number of probes grow very large) but that the expected 
number of probes is between 1.5 and 2.5 if we can ensure that the load factor � is less 
than 1/2. Next, we consider the use of array resizing for this purpose.

   Array resizing We can use our standard array-resizing technique from Chapter 
1 to ensure that the load factor never exceeds one-half. First, we need a new construc-
tor for LinearProbingHashST that takes a fixed capacity as argument (add a line to 

the constructor in Algorithm 
3.6 that sets M to the given value 
before creating the arrays). Next, 
we need the resize() method 
given at left, which creates a new 
LinearProbingHashST of the giv-
en size, puts all the keys and values 
in the table in the new one, then 
rehashes all the keys into the new 
table. These additions allow us to 
implement array doubling. The call 
to resize() in the first statement 
in put() ensures that the table is at 

 

most one-half full. This code builds a hash table twice the size with the same keys, thus 
halving the value of �. As in other applications of array resizing, we also need to add

 if (N > 0 && N <= M/8) resize(M/2);

as the last statement in delete() to ensure that the table is at least one-eighth full. 
This ensures that the amount of memory used is always within a constant factor of the 
number of key-value pairs in the table. With array resizing, we are assured that � � 1/2. 

Separate chaining. The same method works to keep lists short (of average 
length between 2 and 8) in separate chaining: replace LinearProbingHashST by 
SeparateChainingHashST in resize(), call resize(2*M) when (N >= M/2) in put(), 
and call resize(M/2) when (N > 0 && N <= M/8) in delete(). For separate chain-
ing, array resizing is optional and not worth your trouble if you have a decent estimate 
of the client’s N: just pick a table size M based on the knowledge that search times are 
proportional to 1+ N/M. For linear probing, array resizing is necessary. A client that 
inserts more key-value pairs than you expect will encounter not just excessively long 
search times, but an infinite loop when the table fills.

private void resize(int cap) 
{
    LinearProbingHashST<Key, Value> t;
    t = new LinearProbingHashST<Key, Value>(cap);
    for (int i = 0; i < M; i++)
       if (keys[i] != null)
           t.put(keys[i], vals[i]);
    keys = t.keys;
    vals = t.vals;
    M    = t.M; 
}

 Resizing a linear-probing hash table
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 Amortized analysis. From a theoretical standpoint, when we use array resizing, we 
must settle for an  amortized bound, since we know that those insertions that cause the 
table to double will require a large number of probes. 

 

hash table is built with array resizing, starting with Proposition N. Suppose a    
an empty table. Under Assumption J, any sequence of t search, insert, and delete
symbol-table operations is executed in expected time proportional to t and with 
memory usage always within a constant factor of the number of keys in the table.

Proof.: For both separate chaining and linear probing, this fact follows from a sim-
ple restatement of the amortized analysis for array growth that we first discussed in 
Chapter 1, coupled with Proposition K and Proposition M.
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The plots of the cumulative averages   for our FrequencyCounter example (shown at 
the bottom of the previous page) nicely illustrate the dynamic behavior of array resiz-
ing in hashing. Each time the array doubles, the cumulative average increases by about 
1, because each key in the table needs to be rehashed; then it decreases because about 
half as many keys hash to each table position, with the rate of decrease slowing as the 
table fills again.

  Memory As we have indicated, understanding memory usage is an important factor 
if we want to tune hashing algorithms for optimum performance. While such tuning 
is for experts, it is a worthwhile exercise to calculate a rough estimate of the amount of 
memory required, by estimating the number of references used, as follows: Not counting 
the memory for keys and values, our implementation SeparateChainingHashST uses 
memory for M references to SequentialSearchST objects plus M SequentialSearchST
objects. Each SequentialSearchST object has the usual 16 bytes of object overhead 
plus one 8-byte reference (first), and there are a total of N Node objects, each with 24 
bytes of object overhead plus 3 references (key, value, and next). This compares with 
an extra reference per node for binary search trees. With array resizing to ensure that 
the table is between one-eighth and one-half full, linear probing uses between 4N and 
16N references. Thus, choosing hashing on the basis of memory usage is not normally 
justified. The calculation is a bit different for primitive types (see Exercise 3.4.24)

method space usage for N items
(reference types)

separate chaining ~ 48 N + 64 M 

linear probing between
~32 N and ~128 N

BSTs ~56 N

 Space  usage in symbol tables
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Since the earliest days of computing, researchers have studied (and are study-
ing) hashing and have found many ways to improve the basic algorithms that we have 
discussed.  You can find a huge literature on the subject. Most of the improvements 
push down the space-time curve: you can get the same running time for searches using 
less space or get faster searches using the same amount of space.  Other improvements 
involve better guarantees, on the expected worst-case cost of a search. Others involve 
improved hash-function designs. Some of these methods are addressed in the exercises.

Detailed comparison of separate chaining and linear probing depends on myriad 
implementation details and on client space and time requirements. It is not normally 
justified to choose separate chaining over linear probing on the basis of performance 
(see Exercise 3.5.31). In practice, the primary performance difference between the two 
methods has to do with the fact that separate chaining uses a small block of memory 
for each key-value pair, while linear probing uses two large arrays for the whole table. 
For huge tables, these needs place quite different burdens on the memory management 
system. In modern systems, this sort of tradeoff is best addressed by experts in extreme 
performance-critical situations. 

With hashing, under generous assumptions, it is not unreasonable to expect to 
support the search and insert symbol-table operations in constant time, independent 
of the size of the table. This expectation is the theoretical optimum performance for 
any symbol-table implementation. Still, hashing is not a panacea, for several reasons, 
including: 

■ A good hash function for each type of key is required.
■ The performance guarantee depends on the quality of the hash function.
■  Hash functions can be difficult and expensive to compute.
■ Ordered symbol-table operations are not easily supported.

Beyond these basic considerations, we defer the comparison of hashing with the other 
symbol-table methods that we have studied to the beginning of Section 3.5.
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Q&A

 

 

 

Q. How does Java implement hashCode() for Integer, Double, and Long?

A. For Integer it just returns the 32-bit value. For Double and Long it returns the ex-
clusive or of the first 32 bits with the second 32 bits of the standard machine representa-
tion of the number. These choices may not seem to be very 
random, but they do serve the purpose of spreading out the 
values. 

 Q. When using array resizing, the size of the table is always 
a power of 2. Isn’t that a potential problem, because it only 
uses the least significant bits of hashCode()?

A. Yes, particularly with the default implementations. One 
way to address this problem is to first distribute the key val-
ues using a prime larger than M, as in the following example:

private int hash(Key x) 
{  
   int t = x.hashCode() & 0x7fffffff; 
   if (lgM < 26) t = t % primes[lgM+5]; 
   return t % M; 
} 

This code assumes that we maintain an instance variable 
lgM that is equal to lg M (by initializing to the appropri-
ate value, incrementing when doubling, and decrementing 
when halving) and an array primes[] of the smallest prime 
greater than each power of 2 (see the table at right). The 
constant 5 is an arbitrary choice—we expect the first % to 
distribute the values equally among the values less than the 
prime and the second to map about five of those values to 
each value less than M. Note that the point is moot for large 
M.

Q. I’ve forgotten. Why don’t we implement hash(x) by returning x.hashCode() % M?

A. We need a result between 0 and M-1, but in Java, the % function may be negative.

Q. So, why not implement hash(x) by returning Math.abs(x.hashcode()) % M?

Primes for hash table sizes

k �k (2k − �k)

 5     1             31
 6     3             61
 7     1            127
 8     5            251
 9     3            509
10     3           1021
11     9           2039
12     3           4093
13     1           8191
14     3          16381
15    19          32749
16    15          65521
17     1         131071
18     5         262139
19     1         524287
20     3        1048573
21     9        2097143
22     3        4194301
23    15        8388593
24     3       16777213
25    39       33554393
26     5       67108859
27    39      134217689
28    57      268435399
29     3      536870909
30    35     1073741789
31     1     2147483647

primes[k]
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A. Nice try. Unfortunately, Math.abs() returns a negative result for the largest nega-
tive number.  For many typical calculations, this overflow presents no real problem, 
but for hashing it would leave you with a program that is likely to crash after a few bil-
lion inserts, an unsettling possibility. For example, s.hashCode() is �231 for the Java 
String value "polygenelubricants". Finding other strings that hash to this value 
(and to 0) has turned into an amusing algorithm-puzzle pastime. 

Q.  Why not use BinarySearchST or RedBlackBST instead of SequentialSearchST in 
Algorithm 3.5?

A. Generally, we set parameters so as to make the number of keys hashing to each value 
small, and elementary symbol tables are generally better for the small tables. In certain 
situations, slight performance gains may be achieved with such hybrid methods, but 
such tuning is best left for experts.

Q.  Is hashing faster than searching in red-black BSTs?

A. It depends on the type of the key, which determines the cost of computing 
hashCode() versus the cost of compareTo(). For typical key types and for Java default 
implementations, these costs are similar, so hashing will be significantly faster, since it 
uses only a constant number of operations. But it is important to remember that this 
question is moot if you need ordered operations, which are not efficiently supported in 
hash tables. See Section 3.5 for further discussion.

Q. Why not let the linear probing table get, say, three-quarters full?

A. No particular reason. You can choose any value of �, using Proposition M to esti-
mate search costs. For � = 3/4, the average cost of search hits is 2.5 and search misses is 
8.5, but if you let � grow to 7/8, the average cost of a search miss is 32.5, perhaps more 
than you want to pay. As � gets close to 1, the estimate in Proposition M becomes in-
valid, but you don’t want your table to get that close to being full.
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EXERCISES

 

 
 

3.4.1 Insert the keys E A S Y Q U T I O N in that order into an initially empty table 
of M = 5 lists, using separate chaining.  Use the hash function 11 k % M to transform 
the kth letter of the alphabet into a table index.

3.4.2  Develop an alternate implementation of SeparateChainingHashST that directly 
uses the linked-list code from SequentialSearchST.

3.4.3  Modify your implementation of the previous exercise to include an integer field 
for each key-value pair that is set to the number of entries in the table at the time that 
pair is inserted.  Then implement a method that deletes all keys (and associated values)  
for which the field is greater than a given integer k. Note : This extra functionality is use-
ful in implementing the symbol table for a compiler.

3.4.4 Write a program to find values of a and M, with M as small as possible, such that 
the hash function  (a * k) %  M  for transforming the kth letter of the alphabet into a 
table index produces distinct values (no collisions) for the keys S E A R C H X M P L. 
The result is known as a   perfect hash function.

3.4.5 Is the following implementation of hashCode() legal?

public int hashCode() 
{  return 17;  } 

If so, describe the effect of using it. If not, explain why.

3.4.6 Suppose that keys are t-bit integers. For a modular hash function with prime M, 
prove that each key bit has the property that there exist two keys differing only in that 
bit that have different hash values.

3.4.7 Consider the idea of implementing modular hashing for integer keys with the 
code  (a * k) %  M , where a is an arbitrary fixed prime.  Does this change mix up the 
bits sufficiently well that you can use nonprime M?

3.4.8 How many empty lists do you expect to see when you insert N keys into a hash 
table with SeparateChainingHashST, for N=10, 102, 103, 104, 105, and 106? Hint : See 
Exercise 2.5.31.

3.4.9 Implement an eager delete() method for SeparateChainingHashST.

3.4.10 Insert the keys E A S Y Q U T I O N in that order into an initially empty table 
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of size M =16 using linear probing. Use the hash function 11 k % M to transform the 
kth letter of the alphabet into a table index. Redo this exercise for M = 10.

3.4.11 Give the contents of a linear-probing hash table that results when you insert the 
keys E A S Y Q U T I O N in that order into an initially empty table of initial size M
= 4 that is expanded with doubling whenever half full. Use the hash function 11 k % M
to transform the kth letter of the alphabet into a table index.

3.4.12 Suppose that the keys A through G, with the hash values given below, are inserted 
in some order into an initially empty table of size 7 using a linear-probing table (with 
no resizing for this problem). Which of the following could not possibly result from 
inserting these keys? 

a.    E   F   G   A   C   B   D
b.    C   E   B   G   F   D   A
c.    B   D   F   A   C   E   G
d.    C   G   B   A   D   E   F
e.    F   G   B   D   A   C   E
f.    G   E   C   A   D   B   F

Give the minimum and the maximum number of probes that could be required to 
build a table of size 7 with these keys, and an insertion order that justifies your answer.

3.4.13 Which of the following scenarios leads to expected linear running time for a 
random search hit in a linear-probing hash table?

a. All keys hash to the same index.
b. All keys hash to different indices.
c. All keys hash to an even-numbered index.
d. All keys hash to different even-numbered indices.

3.4.14 Answer the previous question for search miss, assuming the search key is equally 
likely to hash to each table position.

3.4.15 How many compares could it take, in the worst case, to insert N keys into an 
initially empty table, using linear probing with array resizing?

3.4.16 Suppose that a linear-probing table of size 106 is half full, with occupied posi-
tions chosen at random. Estimate the probability that all positions with indices divisible 
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by 100 are occupied.

3.4.17  Show the result of using the delete() method on page 471 to delete C from the 
table resulting from using LinearProbingHashST with our standard indexing client 
(shown on page 469).

3.4.18  Add a constructor to SeparateChainingHashST that gives the client the ability 
to specify the average number of probes to be tolerated for searches. Use array resizing 
to keep the average list size less than the specified value, and use the technique described 
on page 478 to ensure that the modulus for hash() is prime. 

3.4.19  Implement keys() for SeparateChainingHashST and LinearProbingHashST.

3.4.20 Add a method to LinearProbingHashST that computes the average cost of a 
search hit in the table, assuming that each key in the table is equally likely to be sought. 

3.4.21  Add a method to LinearProbingHashST that computes the average cost of a 
search miss in the table, assuming a random hash function. Note : You do not have to 
compute any hash functions to solve this problem. 

3.4.22  Implement hashCode() for various types: Point2D, Interval, Interval2D,    
and Date.  

3.4.23 Consider modular hashing for string keys with R = 256 and M = 255. Show 
that this is a bad choice because any permutation of letters within a string hashes to the 
same value.

3.4.24  Analyze the space usage of separate chaining, linear probing, and BSTs for 
double keys. Present your results in a table like the one on page 476.

EXERCISES (continued)
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CREATIVE PROBLEMS

 

 

3.4.25    Hash cache. Modify Transaction on page 462 to maintain an instance variable 
hash, so that hashCode() can save the hash value the first time it is called for each object 
and does not have to recompute it on subsequent calls. Note : This idea works only for 
immutable types.

3.4.26  Lazy delete for linear probing. Add to LinearProbingHashST a delete()
method that deletes a key-value pair by setting the value to null (but not removing 
the key) and later removing the pair from the table in resize(). Your primary chal-
lenge is to decide when to call resize(). Note : You should overwrite the null value if 
a subsequent put() operation associates a new value with the key. Make sure that your 
program takes into account the number of such tombstone items, as well as the number 
of empty positions, in making the decision whether to expand or contract the table.

3.4.27      Double probing. Modify SeparateChainingHashST to use a second hash func-
tion and pick the shorter of the two lists. Give a trace of the process of inserting the keys 
E A S Y Q U T I O N in that order into an initially empty table of size M =3 using 
the function 11 k % M (for the kth letter) as the first hash function and the function 
17 k % M (for the kth letter) as the second hash function. Give the average number of 
probes for random search hit and search miss in this table.

3.4.28      Double hashing. Modify LinearProbingHashST to use a second hash function 
to define the probe sequence. Specifically, replace (i + 1) % M (both occurrences) by 
(i + k) % M where k is a nonzero key-dependent integer that is relatively prime to M. 
Note : You may meet the last condition by assuming that M is prime. Give a trace of the 
process of inserting the keys E A S Y Q U T I O N in that order into an initially empty 
table of size M =11, using the hash functions described in the previous exercise. Give 
the average number of probes for random search hit and search miss in this table. 

3.4.29  Deletion. Implement an eager delete() method for the methods described in 
each of the previous two exercises.

3.4.30     Chi-square statistic. Add a method to SeparateChainingST to compute the � 2

statistic for the hash table. With N keys and table size M, this number is defined by the 
equation 

� 2
   =   (M/N) ( (f0 � N/M)2 + (f1 � N/M)2 �  . . .  (fM � 1� N/M)2 )
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where fi is the number of keys with hash value i. This statistic is one way of checking our 
assumption that the hash function produces random values. If so, this statistic, for N > 
cM, should be between  M � � M  and M + � M  with probability 1 � 1/c.   

3.4.31    Cuckoo hashing. Develop a symbol-table implementation that maintains two 
hash tables and two hash functions. Any given key is in one of the tables, but not both. 
When inserting a new key, hash to one of the tables; if the table position is occupied, 
replace that key with the new key and hash the old key into the other table (again kick-
ing out a key that might reside there). If this process cycles, restart. Keep the tables less 
than half full. This method uses a constant number of equality tests in the worst case 
for search (trivial) and amortized constant time for insert.

3.4.32  Hash attack. Find 2N strings, each of length 2N, that have the same hashCode()
value, supposing that the hashCode() implementation for String is the following:

public int hashCode() 
{  
   int hash = 0;
   for (int i = 0; i < length(); i ++)
      hash = (hash * 31) + charAt(i);
   return hash; 
} 

Strong hint : Aa and BB have the same value. 

3.4.33  Bad hash function. Consider the following hashCode() implementation for 
String, which was used in early versions of Java:

public int hashCode() 
{  
   int hash = 0;
   int skip = Math.max(1, length()/8);
   for (int i = 0; i < length(); i += skip)
      hash = (hash * 37) + charAt(i);
   return hash; 
} 

Explain why you think the designers chose this implementation and then why you 
think it was abandoned in favor of the one in the previous exercise.

CREATIVE PROBLEMS (continued)
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3.4.34  Hash cost. Determine empirically the ratio of the time required for hash()
to the time required for compareTo(), for as many commonly-used types of keys for 
which you can get meaningful results.

3.4.35  Chi-square test. Use your solution from Exercise 3.4.30 to check the assump-
tion that the hash functions for commonly-used key types produce random values.

3.4.36  List length range. Write a program that inserts N random int keys into a table 
of size N / 100 using separate chaining, then finds the length of the shortest and longest 
lists, for N = 10 3, 10 4, 10 5, 10 6.

3.4.37  Hybrid. Run experimental studies to determine the effect of using RedBlackBST
instead of SequentialSearchST to handle collisions in SeparateChainingHashST. 
This solution carries the advantage of guaranteeing logarithmic performance even for 
a bad hash function and the disadvantage of necessitating maintenance of two different 
symbol-table implementations. What are the practical effects?  

3.4.38  Separate-chaining distribution. Write a program that inserts 10 5 random non-
negative integers less than 10 6 into a table of size 10 5 using linear probing, and that 
plots the total number of probes used for each 10 3 consecutive insertions. Discuss the 
extent to which your results validate Proposition K.

3.4.39  Linear-probing distribution. Write a program that inserts N/2 random int keys 
into a table of size N using linear probing, then computes the average cost of a search 
miss in the resulting table from the cluster lengths, for N = 10 3, 10 4, 10 5, 10 6. Discuss 
the extent to which your results validate Proposition M.

3.4.40  Plots. Instrument LinearProbingHashST and SeparateChainingHashST to 
produce plots like the ones shown in the text.

3.4.41  Double probing. Run experimental studies to evaluate the effectiveness of dou-
ble probing (see Exercise 3.4.27).

3.4.42  Double hashing. Run experimental studies to evaluate the effectiveness of dou-
ble hashing (see Exercise 3.4.28).

3.4.43  Parking problem. (D. Knuth) Run experimental studies to validate the hypoth-
esis that the number of compares needed to insert M random keys into a linear-probing 
table of size M is ~cM 3/2, where c = ��/2.
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