Lecture 2: Vector equations, Matrix equations. (boon: 1.3, 1.4)
Previous lecture: geometric /row point of view to an SLE + Gaussian elimination.

Today: column point of view to an SLE.

$$
\begin{gathered}
x+y=30 \\
2 x+4 y=74
\end{gathered}
$$

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right] \quad \underline{b}=\left[\begin{array}{l}
30 \\
74
\end{array}\right]
$$

From a machine learning perspective: columns of A are feature vectors (Vectors thai collect features that we measured
For instance, height and weight $f=\left[\begin{array}{l}h \\ \omega\end{array}\right]$
Collect data from N animals $\rightarrow N$ feature vectors:

$$
f_{1}=\left[\begin{array}{l}
h_{1} \\
w_{1}
\end{array}\right], e_{2}=\left[\begin{array}{l}
h_{2} \\
w_{2}
\end{array}\right] \cdots \cdot p_{N}=\left[\begin{array}{l}
h_{N} \\
w_{N}
\end{array}\right] .
$$

These vectors ar e points in the feature spare $\left(\mathbb{R}^{2}\right)$.

In general: n features $\rightarrow(n \times 1)$ vector $\underline{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$
$\left[\begin{array}{c}2 \\ 3\end{array}\right] \neq\left[\begin{array}{c}3 \\ 2\end{array}\right]$

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right] \neq\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

We can perform operations with vectors:

* scaling $\underline{u}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

$$
2 \underline{u}=\left[\begin{array}{l}
6 \\
4
\end{array}\right]
$$

$-\underline{u}=(-1) \cdot \underline{u}=\left[\begin{array}{l}-3 \\ -2\end{array}\right]$.

南 addition $\quad \underline{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad \underline{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad \underline{u}+\underline{v}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$

Algebraic properties of \mathbb{R}^{n} : book ps.

Combining these two operations:
Given vectors $\left\{\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{p}\right\}$ in \mathbb{R}^{n} and c_{1}, \ldots, c_{p} the vector

$$
y=c_{1} \cdot \underline{v}_{1}+c_{2} \cdot \underline{v}_{2}+\cdots \cdot+c_{p} \cdot \underline{v}_{p}
$$

is called a linear combination of $\underline{v}_{1}, \ldots, \underline{v}_{p}$ with weights $c_{1}, \ldots c_{p}$.
Example: $\underline{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad \underline{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad \underline{b}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$
Q: can \underline{b} be written as a linear combination of \underline{u} and \underline{v} ? i.e., can we find c_{1} and c_{2} such that $c_{1} \cdot \underline{u}+c_{2} \cdot \underline{v}=\underline{b}$?

$$
\begin{aligned}
& c_{1} \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right] ? \text { vector equation } \\
& {\left[\begin{array}{l}
c_{1} \\
2 c_{1}
\end{array}\right]+\left[\begin{array}{l}
2 c_{2} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]} \\
& {\left[\begin{array}{l}
c_{1}+2 c_{2} \\
2 c_{1}+c_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]}
\end{aligned}
$$

$$
\left\{\begin{array}{r}
c_{1}+2 c_{2}=5 \\
2 c_{1}+c_{2}=4
\end{array}\right.
$$

\leftarrow hey. that is an SLE?

* Every SUE can be written as a vector equation, and the other way around.
* Solving an SUE means iwestigating whether $\frac{b}{A}$ can be written as a linear combination of the columns of A. (column point of view).

$$
\begin{gathered}
\underline{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \underline{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
\underline{b}=\underline{u}+2 \cdot \underline{v} \\
\underline{d}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \\
-1 / 3 \underline{u}+(-1 / 3) \underline{v}
\end{gathered}
$$

Example:(no sol.) $\underline{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \underline{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right] \quad \underline{b}\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Hence, there is no way to obtain $\frac{b}{a}$ by taking a linear combination of 4 and $\underline{\text { a }}$.

Example (a many solutions in \mathbb{R}^{2}):

$$
\begin{aligned}
& \underline{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \underline{v}=\left[\begin{array}{l}
2 \\
u
\end{array}\right] \quad b=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& 2 \cdot \underline{u}+(-1) \cdot \underline{v}=\underline{b} \\
& 0 \cdot \underline{u}+0 \cdot \underline{v}=\underline{b} \\
& u+(-1 / 2) \cdot \underline{v}=\underline{b} .
\end{aligned}
$$

There are os many ways to linearly combine \underline{u} and \underline{v}.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}+2 x_{2}=0 \\
2 x_{1}+4 x_{2}=0
\end{array} \quad\left[\begin{array}{ll:l}
1 & 2 & 0 \\
2 & 4 & 0
\end{array}\right] \tilde{R}_{2}: R_{2}-2 \cdot R_{1}\left[\begin{array}{ll:l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\right. \\
& \left\{\begin{array}{l}
x_{1}=-2 x_{2} \\
x_{2} \text { is free }
\end{array} \quad\right. \text { (parametric form) }
\end{aligned}
$$

$$
\underline{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2} \\
x_{2}
\end{array}\right]=x_{2} \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \text { (parametric vector form) }
$$

Hence, the solution set is $x_{2} \cdot \underline{\omega}$, where $\underline{\omega}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. i.e., $\operatorname{Span}\{\underline{w}\}$
\rightarrow any scalar multiple of \underline{w}.

any solution on this line
is a solution to the sue. is a solution to the sue.

Example (co many solutions in \mathbb{R}^{3})

$$
\begin{aligned}
& x_{1}-3 x_{2}+2 x_{3}=0 \\
& 2 x_{1}-6 x_{2}+4 x_{3}=0 \\
& {\left[\begin{array}{ccc}
1 & -3 & 2 \\
2 & -6 & 0 \\
2 & 0
\end{array}\right] \hat{R_{2}}: R_{2}-2 \cdot R_{1}\left[\begin{array}{ccc:c}
1 & -3 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \left\{\begin{array}{l}
x_{1}=3 x_{2}-2 x_{3} \\
x_{2} \\
x_{3} \\
\text { is free free }
\end{array}\right. \\
& \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 x_{2}-2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2} \cdot\left[\begin{array}{l}
3 \\
1 \\
0 \\
\underline{w}_{1}
\end{array}\right.
\end{aligned}
$$

Hence, a solution is any linear combination of \underline{w}_{1} and $\underline{\omega}_{2}$. $\operatorname{Span}\left\{\underline{w}_{1}, \underline{w}_{2}\right\}$
So, the solution set is a plane in \mathbb{R}^{3}.
Given a set of p vectors $\left\{\underline{v}_{1}, \ldots, v_{p}\right\}$ in \mathbb{R}^{n}, the span of this set of vectors is the set of ail possible linear combinations of the vectors in this set.
$\rightarrow \operatorname{span}_{\text {written as }}\left\{\underline{v}_{1}, \ldots, \underline{v}_{p}\right\}$ contains any vector y that can be

$$
y=c_{1} \cdot \underline{v}_{1}+c_{2} \cdot \underline{v}_{2}+\cdots+c_{p} \underline{v}_{p}
$$

Hence, sowing an SLE boils down to investigating whether b belongs to the span of the columns of ligating whether

We can see a linear combination of vectors as the product of a matrix (A) and a vector (ㅡ) .
Definition of $A \underline{x}$: linear combination of the columns off A with the entries of x being the weights.

$$
A \underline{x}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right]=4 \cdot\left[\begin{array}{c}
1 \\
0
\end{array}\right]+3 \cdot\left[\begin{array}{c}
2 \\
-5
\end{array}\right]+7 \cdot\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] .
$$

More efficient $A \underline{x}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3 \\ 7\end{array}\right]=\left[\begin{array}{cc}1 \cdot 4+2 \cdot 3+(-1) \cdot 7 \\ 0 \cdot 4+(-5) \cdot 3+3 \cdot 7\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]$
We need: \#columns of $A=$ row/entries of x.
Properties of the matrix-vector product: p. 65
Three things with the same solution set:

* the SUE with cungmented matrix $\left[\begin{array}{llll:l}\underline{a} & \underline{a}_{2} & \cdots & a_{n} & \underline{b}\end{array}\right]$
* the vector equation $x_{1} \cdot \underline{a}_{1}+x_{2} \cdot \underline{a}_{2}+\cdots+x_{n} \cdot \underline{a}_{n}=\underline{b}$.
* the matrix equation $\left[\begin{array}{llll}\underline{a}_{1} & \underline{a}_{2} & \ldots & \underline{a}_{n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\underline{b} . \quad A \underline{x}=\underline{b}$

Example: $A=\left[\begin{array}{lll}1 & 5 & -3 \\ 0 & 1 & -2\end{array}\right] \quad Q$: Is $A \underline{x}=\underline{b}$ consistent for every $b \in \mathbb{R}^{3}$? No ∇_{0}

$$
\left[\begin{array}{ccc:c}
1 & 5 & -3 & b_{1} \\
0 & 1 & -2 & b_{2} \\
-2 & -10 & 6 & b_{3}
\end{array}\right] \stackrel{R_{3}: R_{3}+2 \cdot R_{1}}{\sim}\left[\begin{array}{ccc:c}
1 & 5 & -3 & b_{1} \\
0 & 1 & -2 & b_{2} \\
0 & 0 & 0 & b_{3}+2 b_{1}
\end{array}\right]
$$

The sUE is consistent if $b_{3}+2 b_{1}=0$.
For example, the SUE is inconsistent if $\underline{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
consistent if $b=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$
4 equivalent statements:

* The columns of A span \mathbb{R}^{m}.
* Each $b \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
* For each $b \in \mathbb{R}^{m}, A \underline{x}=\underline{b}$ has a solution.
* A has a pivot position in every row.

