Theory of Computation

 BCS1110Dr. Ashish Sai

- TOC - Lecture 2
bcs1110.ashish.nl

Plan for Today

- Recap from TOC Lecture 1
- Tabular DFAs
- Regular Languages
- NFAs
- Designing NFAs
- (if time permits) Tutorial Questions

Recap From Last Time

Old MacDonald Had a Symbol, ffs

-Here's a quick guide to remembering which is which"

- Typically, we use the symbol Σ (sigma) to refer to an alphabet
- The empty string is length 0 and is denoted $\boldsymbol{\varepsilon}$ (epsilon)
- In set theory, use \in to say "is an element of"
- In set theory, use \subseteq to say "is a subset of"

DFAs

- A DFA is a
- Deterministic
- Finite
- Automaton

Recognizing Languages with DFAs

$L=\left\{w \in\{a, b\}{ }^{*} \mid w\right.$ contains aa as a substring \}

DFAs

- A DFA is defined relative to some alphabet Σ (sigma)
- For each state in the DFA, there must be exactly one transition defined for each symbol in Σ
- This is the "deterministic" part of DFA
- There is a unique start state
- There are zero or more accepting states

Tabular DFAs Part 1/4

Deterministic Finite Automaton (Formal Definition)

- Input: String of weather data
- 类 Heatwave: temperature ≥ 28 C for 2 consecutive days

DFA Definition

Transition Function

$D=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$-Q$ is the set of states [Q
$=\left\{q_{0}, q_{1}, q_{2}\right\}$]
$-\Sigma$ is the alphabet [$\Sigma=$ \{1,0\}]

- δ is the transition
function
- q_{0} is the start state
- F is an accepting state
[F = \{ $\left.q_{3}\right\}$]

$\geq 28 \mathrm{C}$ is 1
$<28 \mathrm{C}$ is 0

DFA Definition

Transition Function

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$-Q$ is the set of states [Q
$=\left\{q_{0}, q_{1}, q_{2}\right\}$]
$-\Sigma$ is the alphabet [$\Sigma=$ \{1,0\}]

- δ is the transition function
- q_{0} is the start state
- F is an accepting state
[F = \{ $\left.q_{3}\right\}$]

Which table best represents the transitions for the following DFA?

Table A

	$\mathbf{0}$	$\mathbf{1}$
q_{0}	q_{1}	q_{0}
q_{1}	q_{3}	q_{2}
q_{2}	q_{3}	q_{0}
q_{3}	q_{3}	q_{3}

Table B

	$\boldsymbol{0}$	$\mathbf{1}$
q_{0}	q_{0}	q_{1}
q_{1}	q_{2}	q_{3}
q_{2}	q_{0}	q_{3}
q_{3}	q_{3}	q_{3}

Tabular DFAs

	$\boldsymbol{0}$	$\mathbf{1}$
${ }^{*} q_{0}$	q_{1}	q_{0}
q_{1}	q_{3}	q_{2}
q_{2}	q_{3}	q_{0}
${ }^{*} q_{3}$	q_{3}	q_{3}

- These starts indicate accepting states
- First row is the start state

Code Demo

When I wrote this code, only god \& I understood what it did.

Now... only god knows.

Thanks Joris!

```
public class DFASimulator
    private static final int kNumStates = 4; // 4 states based on the table
    private static final int kNumSymbols = 2; // 2 symbols (0 and 1) based on the table
    private static final int[][] kTransitionTable = 
        {1, 0},
        {3, 2},
        {3, 0},
    };
    private static final boolean[] kAcceptTable = {
    true,
        false,
        false,
        false
    };
    public static boolean simulateDFA(String input) {
    int state = 0;
    har[] inputArray = input.toCharArray();
    for (int i = 0; i < inputArray.length; i++)
        har ch = inputArray[i];
        if (ch != inputArray[i];
            throw new IllegalArgumentException("Invalid input symbol: " + ch);
            }
        state = kTransitionTable[state][ch - '0'];
    }
    return kAcceptTable[state];
    }
    public static void main(String[] args)
    String testInput = "1011"; // Example input
    boolean isAccepted = simulateDFA(testInput);
    System.out.println("The input " + testInput + " is " + (isAccepted ? "accepted" : "rejected") + " by the DFA.");
    }
}
```


The Regular Languages
 Part 2/4

- A language L is called a regular language if there exists a DFA D such that $L(D)=L$
- If L is a language and $L(D)=L$, we say that D recognises the language L

The Complement of a Language

- Given a language $L \subseteq \Sigma^{*}$, the complement of that language (denoted L') is the language of all strings in Σ^{*} that aren't in L
- Formally: $L^{\prime}=\Sigma^{*}-L$

Complements of Regular Languages

- As we saw a few minutes ago, a regular language is a language accepted by some DFA
- Question: If L is a regular language, is L' necessarily a regular language?
- If the answer is "yes," then if there is a way to construct a DFA for L, there must be some way to construct a DFA for L^{\prime}
- If the answer is "no," then some language L can be accepted by some DFA, but L^{\prime} cannot be accepted by any DFA

Computational Device for L'

Complementing Regular Languages
$L=\{w \in\{a, b\} * \mid w$ contains aa as a substring \}

$L^{\prime}=\{w \in\{a, b\} * \mid w$ does not contain aa as a substring\}

More Elaborate DFAs

$\mathrm{L}=\{\mathrm{w} \in\{a,, /\}$ | w represents a (multi-line) Java-style comment \}

More Elaborate DFAs

L' = \{ w $\in\{a,, /\}$ | w doesn't represents a (multi-line) Javastyle comment \}

Closure Properties

- Theorem: If L is a regular language, then L^{\prime} is also a regular language
- As a result, we say that the regular languages are closed under complementation

Time Out

(Not A Break)

Ever felt you weren't good enough to be in STEM? Afraid of being "found out" because you don't think you belong?

\square People who get IMPOSTER SYNDROME
\square OTHER PEOPLE WHO GET IMPOSTER SYNDROME
\square Literally everyone else (THEY ALSO GET IMPOSTER SYNDROME)

Everyone feels like an Imposter SOMETIMES, AND THAT'S OKAY

NFAs

Part 3/4

NFAs

- An NFA is a
- Nondeterministic
- Finite
- Automaton
- Structurally similar to a DFA, but represents a fundamental shift in how we'll think about computation

(Non)determinism

- A model of computation is deterministic if at every point in the computation, there is exactly one choice that can make
- The machine accepts if that series of choices leads to an accepting state
- A model of computation is nondeterministic if the computing machine may have multiple decisions that it can make at one point
- The machine accepts if any series of choices leads to an accepting state
- (This sort of nondeterminism is technically called existential nondeterminism, the most philosophical-sounding term we'll introduce)

A Simple NFA

q_{0} has two transitions defined on 1!

A Simple NFA

Input: 01011

Non-Deterministic Finite Automaton (Formal Definition)


```
D = (Q, \Sigma, \delta, q0, F)
-Q is the set of states [Q = { q}\mp@subsup{q}{0}{},\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},\mp@subsup{q}{3}{}
-\Sigma is the alphabet [ [ = {1,0} ]
- \delta is the transition function [Same table as DFA, see the next slide]
-q0 is the start state
- F is an accepting state [F = { q2 } ]
```


A Simple NFA: Transaction Function

A Simple NFA: Transaction Function

State	$\mathbf{0}$	$\mathbf{1}$
q_{0}	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
q_{1}	$\left\{q_{3}\right\}$	$\left\{q_{2}\right\}$
q_{2}	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$
q_{3}	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$

A More Complex NFA

If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path does not accept

As with DFAs, the language of an NFA N is the set of strings N accepts: $L(N)=\left\{w \in \sum^{*} \mid N\right.$ accepts $\left.w\right\}$
What is the language of the NFA shown above?

- A) \{01011\}
- B) \{ w $\in\{0,1\}{ }^{*} \mid$ w contains at least two 1 s$\}$
-C) $\left\{w \in\{0,1\}{ }^{*} \mid w\right.$ ends with 11$\}$
-D) \{ w $\in\{0,1\}{ }^{*} \mid w$ ends with 1 \}
-E) None of these, or two or more of these

NFA Acceptance

- An NFA N accepts a string w if there is some series of choices that lead to an accepting state
- Consequently, an NFA N rejects a string w if no possible series of choices lead it into an accepting state
- It's easier to show that an NFA does accept something than to show that it doesn't

e-Transitions

- NFAs have a special type of transition called the $\boldsymbol{\varepsilon}$ transition
- An NFA may follow any number of ε transitions at any time without consuming any input

Input: b a a b b

ε-Transitions

NFAs are not required to follow ε-transitions. It's simply another option at the machine's disposal

Suppose we run the above NFA on the string 10110. How many of the following statements are true?

- There is at least one computation that finishes in an accepting state
- There is at least one computation that finishes in a rejecting state
- There is at least one computation that dies
- This NFA accepts 10110
- This NFA rejects 10110

Designing NFAs
 Part 4/4

Designing NFAs

- When designing NFAs, embrace the nondeterminism!
- Good model: Guess-and-check:
- Is there some information that you'd really like to have? Have the machine nondeterministically guess that information
- Then, have the machine deterministically check that the choice was correct
- The guess phase corresponds to trying lots of different options
- The check phase corresponds to fltering out bad guesses or wrong options

Guess-and-Check

$L=\left\{w \in\{0,1\}{ }^{*} \mid w\right.$ ends in 010 or 101\}

Guess-and-Check

$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends in 010 or 101\}

Guess-and-Check

$L=\left\{w \in\{0,1\}{ }^{*} \mid\right.$ w ends in 010 or 101\}

- Nondeterministically guess when to leave the start state
- Deterministically check whether that was the right time to do so

Guess-and-Check

$L=\left\{w \in\{0,1\}{ }^{*} \mid\right.$ w ends in 010 or 101\}

- Nondeterministically guess when to leave the start state
- Deterministically check whether that was the right time to do so

Guess-and-Check
$L=\{w \in\{a, b, c\} * \mid a t$ least one of a, b, or c is not in w \}

Guess-and-Check
$L=\{W \in\{a, b, c\} *$ at least one of a, b, or c is not in w \}

Guess-and-Check

$\mathrm{L}=\left\{w \in\{a, b, c\}{ }^{*}\right.$ | at least one of a, b, or c is not in w\}

- Nondeterministically guess which character is missing
- Deterministically check whether that character is indeed missing

Guess-and-Check

$L=\left\{w \in\{a, b, c\}{ }^{*}\right.$ | at least one of a, b, or c is not in w\}

- Nondeterministically guess which character is missing
- Deterministically check whether that character is indeed missing

NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
- Every DFA essentially already is an NFA!
- Question: Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is yes!

See you in the abo

