
@@export_scripts@@

Theory of
Computation
BCS1110
Dr. Ashish Sai

!

 TOC - Lecture 2

"

 bcs1110.ashish.nl

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/bcs1110.ashish.nl

@@export_scripts@@

Plan for Today
Recap from TOC Lecture 1–

Tabular DFAs–

Regular Languages–

NFAs–

Designing NFAs–

(if time permits) Tutorial Questions–

@@export_scripts@@

Recap From Last Time

@@export_scripts@@

Old MacDonald Had a Symbol,

!

Ʃ-eye-ε-ey∈, Oh!

!

Here’s a quick guide to remembering which is which"–

Typically, we use the symbol Σ (sigma) to refer to
an alphabet

–

The empty string is length 0 and is denoted ε
(epsilon)

–

In set theory, use ∈ to say “is an element of”–

In set theory, use ⊆ to say “is a subset of”–

@@export_scripts@@

DFAs

A DFA is a–
Deterministic–
Finite–
Automaton–

@@export_scripts@@

Recognizing Languages with DFAs
L = { w ∈ {a,b} | w contains aa as
a substring }

∗

q0 q1
Start a

q2
a

b Σ

b

@@export_scripts@@

DFAs
A DFA is defined relative to some alphabet Σ
(sigma)

–

For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ

–

This is the “deterministic” part of DFA–
There is a unique start state–
There are zero or more accepting states–

@@export_scripts@@

Tabular DFAs
Part 1/4

@@export_scripts@@

Deterministic Finite Automaton (Formal
Definition)

D0 D1
Start
State D2

≥ 28 C ≥ 28 C

< 28 C

<28 C , ≥ 28 C

Input: String of weather data–

!

 Heatwave: temperature ≥ 28 C for 2 consecutive
days

–

@@export_scripts@@

DFA Definition
D = (Q, Σ, δ, , F)q0

Q is the set of states [Q
= { , , }]

–
q0 q1 q2

Σ is the alphabet [Σ =
{1,0}]

–

δ is the transition
function

–

 is the start state– q0

F is an accepting state
[F = { }]

–
q3

Transition Function

q0 q1
Start
State q2

1 1

0

1, 0

≥ 28 C is 1
< 28 C is 0

0

@@export_scripts@@

DFA Definition
M = (Q, Σ, δ, , F)q0

Q is the set of states [Q
= { , , }]

–
q0 q1 q2

Σ is the alphabet [Σ =
{1,0}]

–

δ is the transition
function

–

 is the start state– q0

F is an accepting state
[F = { }]

–
q3

Transition Function

1 0

q0 q1
Start
State q2

1 1

0

1, 0

≥ 28 C is 1
< 28 C is 0

0

q0 q1 q0

q1 q2 q1

q2 q2 q2

@@export_scripts@@

Which table best represents the transitions for the
following DFA?

q1
Start 0

q3
1

q2

Σ

q0

1

1

0

0

Table A

0 1

q0 q1 q0

q1 q3 q2

q2 q3 q0

q3 q3 q3

Table B

0 1

q0 q0 q1

q1 q2 q3

q2 q0 q3

q3 q3 q3

@@export_scripts@@

Tabular DFAs

q1
Start 0

q3
1

q2

Σ

q0

1

1

0

0

0 1

q∗
0 q1 q0

q1 q3 q2

q2 q3 q0

q∗
3 q3 q3

These starts indicate accepting states–
First row is the start state–

@@export_scripts@@

Code Demo

@@export_scripts@@

Thanks Joris!

@@export_scripts@@

public class DFASimulator {

 private static final int kNumStates = 4; // 4 states based on the table
 private static final int kNumSymbols = 2; // 2 symbols (0 and 1) based on the table

 private static final int[][] kTransitionTable = {
 {1, 0},
 {3, 2},
 {3, 0},
 {3, 3}
 };

 private static final boolean[] kAcceptTable = {
 true,
 false,
 false,
 true
 };

 public static boolean simulateDFA(String input) {
 int state = 0;
 char[] inputArray = input.toCharArray();
 for (int i = 0; i < inputArray.length; i++) {
 char ch = inputArray[i];
 if (ch != '0' && ch != '1') {
 throw new IllegalArgumentException("Invalid input symbol: " + ch);
 }
 state = kTransitionTable[state][ch - '0'];
 }
 return kAcceptTable[state];
 }

 public static void main(String[] args) {
 String testInput = "1011"; // Example input
 boolean isAccepted = simulateDFA(testInput);
 System.out.println("The input " + testInput + " is " + (isAccepted ? "accepted" : "rejected") + " by the DFA.");
 }
}

@@export_scripts@@

The Regular
Languages

Part 2/4

@@export_scripts@@

A language L is called a
regular language if there
exists a DFA D such that L(D)=L

–

If L is a language and L(D)=L,
we say that D recognises the
language L

–

@@export_scripts@@

The Complement of a Language

Given a language L ⊆ Σ , the complement of that
language (denoted L’) is the language of all
strings in Σ that aren't in L

– ∗

∗

Formally: L’ – = Σ −∗ L

L L'

Σ*

@@export_scripts@@

Complements of Regular Languages
As we saw a few minutes ago, a regular language is a
language accepted by some DFA

–

Question: If L is a regular language, is L’
necessarily a regular language?

–

If the answer is “yes,” then if there is a way to
construct a DFA for L, there must be some way to
construct a DFA for L’

–

If the answer is “no,” then some language L can be
accepted by some DFA, but L’ cannot be accepted by
any DFA

–

@@export_scripts@@

Input

Yes

No

Input

No

Yes

Computational Device for L

Computational Device for L'

@@export_scripts@@

Complementing Regular Languages

L = { w ∈ {a,b}* | w contains aa as a substring }

L’ = { w ∈ {a,b}* | w does not contain aa as a
substring}

q0 q1
Start a

q2
a

b Σ

b

q2
Start a a

b Σ

b

q1q0

@@export_scripts@@

More Elaborate DFAs
L = { w ∈ {a,,/} | w represents a
(multi-line) Java-style comment }

q0 q1
Start /

q4
*

a, * Σ

q2 q3

q5

/, a

*

/, a

a

*

/

Σ

@@export_scripts@@

More Elaborate DFAs
L’ = { w ∈ {a,,/} | w doesn’t
represents a (multi-line) Java-
style comment }

q4
Start / *

a, * Σ

/, a

*

/, a

a

*

/

Σ

q3q2q1q0

q5

@@export_scripts@@

Closure Properties
Theorem: If L is a regular
language, then L’ is also a
regular language

–

As a result, we say that the
regular languages are closed
under complementation

–

@@export_scripts@@

Time Out
(Not A Break)

@@export_scripts@@

Ever felt you weren't good
enough to be in STEM? Afraid
of being "found out" because
you don't think you belong?

@@export_scripts@@

@@export_scripts@@

NFAs
Part 3/4

@@export_scripts@@

NFAs
An NFA is a–
Nondeterministic–
Finite–
Automaton–

Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation

–

@@export_scripts@@

(Non)determinism
A model of computation is deterministic if at every point in
the computation, there is exactly one choice that can make

–

The machine accepts if that series of choices leads to an
accepting state

–

A model of computation is nondeterministic if the computing
machine may have multiple decisions that it can make at one
point

–

The machine accepts if any series of choices leads to an
accepting state

–

(This sort of nondeterminism is technically called existential
nondeterminism, the most philosophical-sounding term we’ll
introduce)

–

@@export_scripts@@

A Simple NFA

 has two transitions defined
on 1!

q0 q1
Start 1

q2

q3

0, 1

1

0 0, 1

0, 1

q0

@@export_scripts@@

A Simple NFA

Input: 01011

q0 q1
Start 1

q2

q3

0, 1

1

0 0, 1

0, 1

@@export_scripts@@

Non-Deterministic Finite Automaton (Formal Definition)

D = (Q, Σ, δ, , F)

q0 q1
Start 1

q2

q3

0, 1

1

0 0, 1

0, 1

q0

Q is the set of states [Q = { , , , }]– q0 q1 q2 q3

Σ is the alphabet [Σ = {1,0}]–
δ is the transition function [Same table as DFA, see the next slide]–
 is the start state– q0

F is an accepting state [F = { }]– q2

@@export_scripts@@

A Simple NFA:
Transaction
Function

q0 q1
Start 1

q2

q3

0, 1

1

0 0, 1

0, 1

@@export_scripts@@

A Simple NFA:
Transaction
Function

q0 q1
Start 1

q2

q3

0, 1

1

0 0, 1

0, 1

State 0 1

{ } { , }

{ } { }

{ } { }

{ } { }

q0 q0 q0 q1

q1 q3 q2

q2 q3 q3

q3 q3 q3

@@export_scripts@@

A More Complex NFA

If a NFA needs to make a transition
when no transition exists, the
automaton dies and that particular path
does not accept

q0 q1
Start 1

q2

0, 1

1

@@export_scripts@@

As with DFAs, the language of an NFA N is the set of strings N accepts:
L(N) = { w ∈ Σ | N accepts w }
What is the language of the NFA shown above?

q0 q1
Start 1

q2

0, 1

1

∗

A) {01011}–
B) { w ∈ {0,1} | w contains at least two 1s }– ∗

C) { w ∈ {0, 1} | w ends with 11 }– ∗

D) { w ∈ {0, 1} | w ends with 1 }– ∗

E) None of these, or two or more of these–

@@export_scripts@@

NFA Acceptance
An NFA N accepts a string w if there is some
series of choices that lead to an accepting
state

–

Consequently, an NFA N rejects a string w if
no possible series of choices lead it into an
accepting state

–

It's easier to show that an NFA does accept
something than to show that it doesn't

–

@@export_scripts@@

ε-Transitions

NFAs have a special
type of transition
called the ε-
transition

–

An NFA may follow
any number of ε-
transitions at any
time without
consuming any input

–

Input: b a a b b

q0 q1
Start a

q2

q1

q1 q1

a

a

bb, ε

b

ε ε

@@export_scripts@@

ε-Transitions
NFAs are not required to follow
ε-transitions. It's simply
another option at the machine's
disposal

@@export_scripts@@

Start 0 0

11

ε ε

0 0

εε ε ε

0

1 1 1

Suppose we run the above NFA

on the string 10110. How

many of the following

statements are true?

There is at least one

computation that finishes

in an accepting state

–

There is at least one

computation that finishes

in a rejecting state

–

There is at least one

computation that dies

–

This NFA accepts 10110–

This NFA rejects 10110–

@@export_scripts@@

Designing NFAs
Part 4/4

@@export_scripts@@

Designing NFAs
When designing NFAs, embrace the nondeterminism!–

Good model: Guess-and-check:–

Is there some information that you'd really like to

have? Have the machine nondeterministically guess that

information

–

Then, have the machine deterministically check that the

choice was correct

–

The guess phase corresponds to trying lots of different
options

–

The check phase corresponds to fltering out bad guesses or
wrong options

–

@@export_scripts@@

Guess-and-Check
L = { w ∈ {0,1} | w ends in 010 or 101}∗

@@export_scripts@@

Guess-and-Check
L = { w ∈ {0,1} | w ends in 010 or 101}∗

1

0

0

0

1

0

Start

1

1

10

0

01

1

@@export_scripts@@

Guess-and-Check
L = { w ∈ {0,1} | w ends in 010
or 101}

∗

Nondeterministically
guess when to leave
the start state

–

Deterministically
check whether that
was the right time to
do so

–

@@export_scripts@@

Guess-and-Check
L = { w ∈ {0,1} | w ends in 010
or 101}

∗

1 0

0

0

Start

1 1

Σ

Nondeterministically
guess when to leave
the start state

–

Deterministically
check whether that
was the right time to
do so

–

@@export_scripts@@

Guess-and-Check

L = { w ∈ {a, b, c} | at
least one of a, b, or c is not
in w }

∗

@@export_scripts@@

Guess-and-Check

L = { w ∈ {a, b, c} | at
least one of a, b, or c is not
in w }

∗

Start

a

a

b

a, b

c

b

b
a

c

a, c

b

c

c

ab
a

c
b, c

Σ

@@export_scripts@@

Guess-and-Check
L={w∈{a, b, c} |
at least one of a,
b, or c is not in w}

∗
Nondeterministically
guess which character
is missing

–

Deterministically
check whether that
character is indeed
missing

–

@@export_scripts@@

Guess-and-Check
L={w∈{a, b, c} |
at least one of a,
b, or c is not in w}

∗

Start

ε

a, b

ε

a, c

ε

b, c

Nondeterministically
guess which character
is missing

–

Deterministically
check whether that
character is indeed
missing

–

@@export_scripts@@

NFAs and DFAs
Any language that can be accepted by a DFA
can be accepted by an NFA.

–

Why?–
Every DFA essentially already is an NFA!–

Question: Can any language accepted by an
NFA also be accepted by a DFA?

–

Surprisingly, the answer is yes!–

@@export_scripts@@

See you in the
lab!

!

