Theory of
Computation

BCS1110
Dr. Ashish Sai

B TOC - Lecture 2
.. bcs1110.ashish.nl



file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/bcs1110.ashish.nl

Plan for Today

— Recap from TOC Lecture 1

— Tabular DFAs

— Regular Languages

— NFAs

— Designing NFAs

— (1f time permits) Tutorial Questions



NS
S = %
S
Ss



Old MacDonald Had a Symbol,
2 -eye-e-ey<,Oh!

— Here's a quick guide to remembering which 1s which"

— Typically, we use the symbol X (sigma) to refer to
an alphabet

— The empty string 1s length © and 1s denoted €
(epsilon)

— In set theory, use € to say “1s an element of"

— In set theory, use € to say “1s a subset of”



DFAs

— A DFA 1s a
— Deterministic
— F1nite
— Automaton



Recognizing Languages with DFAs

L = {we€ {a,b} * | wcontains aa as
a substring }

z




DFAs

— A DFA 1s defined relative to some alphabet X
(sigma)

— For each state 1in the DFA, there must be
exactly one transition defined for each
symbol 1n X

— This 1s the "deterministic” part of DFA
— There 1s a unique start state

— [here are zero Or more accepting states



Tabular DFAs

Part 1/4




Deterministic Finite Automaton (Formal
Definition)

=28 C =28 C

Start
- @ ° @

<28 C

<28C,=28C

— Input: String of weather data

N7

— %X Heatwave: temperature = 28 C for 2 consecutive
days




DFA Definition

D = (QI zl 61 901 F)

— Q 1s the set of states [Q
={C_IOIQ1,(12}]

— Y 1s the alphabet [X =
{1,090} 1

— 6 1s the transition
function

—qo 1s the start state

— F 1s an accepting state
[F = { g3 } |

Transition Function

=>28Cis 1
<28Cis0




DFA Definition
M = (QI zl 61 901 F)

— Q 1s the set of states [Q

={C_IOIQ1,(12}]

— Y 1s the alphabet [X =
{1,090} 1]

— 6 1s the transition
function

—qo 1s the start state

— F 1s an accepting state

[F = { g3 } |

Transition Function

1 (%)
q0 q1 qo
qd1 42 d1

q2 q2 q2




Which table best represents the transitions for the
following DFA?

Table A

(%) 1
do q1 do
q1 q3 q2
q2 a3 iy
q3 q3 q3
Table B

(%) 1
do0 do q1
qi q2 q3
q2 q0 qs3
q3 q3 q3




Tabular DFAs

(%) 1
:m, qi do
q1 dqs q2
q2 q3 qo
EB, q3 q3

— These starts indicate accepting states
— First row is the start state




Code Demo



When | wrote this code,
only god & | understood what it did.

Now... only god knows.

Thanks Joris!



public class DFASimulator {

private static final int kNumStates = // 4 states based on the table

private static final int kNumSymbols = 2; // 2 symbols (0 and 1) based on the table

private static final int[][] kTransitionTable = {
{1, 0},
{3I 2}[
{3, 0},
{3, 3}
}i

private static final boolean[] kAcceptTable =
true,
false,
false,
true
b

public static boolean simulateDFA (String input) {

int state = 0;

char[] inputArray = input.toCharArray();

for (int i = 0; i < inputArray.length; i++) {
char ch = inputArray[i];
if (ch !'= '0" && ch != '"1") {

throw new IllegalArgumentException("Invalid input symbol: " + ch);

}
state = kTransitionTable[state] [ch - '0'];

}
return kAcceptTable[state];

public static void main(String[] args) {
String testInput = "1011"; // Example input
boolean isAccepted = simulateDFA (testInput) ;
System.out.println ("The input " + testInput + " is " + (isAccepted ? "accepted" : "rejected") + " by the DFA.");




The Regular
Languages

Part 2/4



— A language L 1s called a
regular language 1f there
exlists a DFA D such that L(D)=L

— If L 1s a language and L(D)=L,
we say that D recognises the
language L



The Complement of a Language

— Given a language L € ¥ *, the complement of that
language (denoted L') 1s the language of all
strings in ¥ * that aren't in L

— Formally: Lf =2 — L




Complements of Regular Languages

— As we saw a few minutes ago, a regular language 1s a
language accepted by some DFA

— Question: If L is a regular language, is L’
necessarily a regular language?

— If the answer 1s "“yes,” then 1f there 1s a way to
construct a DFA for L, there must be some way to
construct a DFA for L’

— If the answer 1s “no,"” then some language L can be
accepted by some DFA, but L’ cannot be accepted by
any DFA




Input

Computational Device for L

Input

Computational Device for L'



Complementing Regular Languages

= {w € {a,b}x | w contains aa as a substring }

@ -6

L' = { w € {a,bl}x w does not contain aa as a

substrlng}
b
Start (2 a
o




More Elaborate DFASs

L =4{w € {a,,/} | w represents a
(multi-line) Java-style comment }




More Elaborate DFASs

L' = {w¢€A{a,,/} | wdoesn't
represents a (multi-line) Java-
style comment }




Closure Properties

— Theorem: If L 1s a regular
language, then L’ 1s also a
regular language

— As a result, we say that the
regular languages are closed
under complementation



Time Out

(Not A Break)




Ever felt you weren't good
enough to be in STEM? Afraid
of being "found out" because
you don't think you belong?



G PEOPLE WHO GET
IMPOSTER SYNDROME

OTHER PEOPLE WHO GET
IMPOSTER SYNDROME

[ ] LITERALLY EVERYONE ELSE
(THEY ALSO GET IMPOSTER
SYNDROME)

EVERYONE FEELS LIKE AN IMPOSTER
SOMETIMES, AND THAT'S OKAY



NFAS

Part 3/4



NFASs

— An NFA 1s a
— Nondeterministic

— Finite

— Automaton

— Structurally similar to a DFA, but

represer

we'll th

ts a fundamer

ink about con

tal shift 1n how
putation



(Non)determinism

— A model of computation is deterministic if at every point 1n
the computation, there 1s exactly one choilce that can make

— The machine accepts 1f that series of choices leads to an
accepting state

— A model of computation is nondeterministic if the computing
machine may have multiple decisions that 1t can make at one
polnt

— The machine accepts 1f any series of choices leads to an
accepting state

— (This sort of nondeterminism 1s technically called existential
nondeterminism, the most philosophical-sounding term we’ll
introduce)



A Simple NFA

go has two transitions defined
on 1!




A Simple NFA

Input: 01011



Non-Deterministic Finite Automaton (Formal Definition)

Start

Y

D = (QI zI 6' gOI F)

—Q 1s the set of states [Q =9{ q, ¢1 , g2, g3 } 1

— Y is the alphabet [X = {1,0} ]
— 8 1s the transition function [Same table as DFA, see the next slide]

—qo 1s the start state

— F is an accepting state [F = { g9 } 1



A Simple NFA:
Transaction
Function




A Simple NFA:
Transaction
Function

State % 1

90 1 4o 1 qo, Q1
q1 E 1 Q2

q> E E

g3 1 §3 1 G3




A More Complex NFA

O, 1

If a NFA needs to make a transition
when no transition exists, the
automaton dies and that particular path
does not accept




Start 1 1

0, 1

As with DFAs, the language of an NFA N is the set of strings N accepts:
L(N) = {wE€ZX?* | N accepts w }

What 1s the language of the NFA shown above?

— A) {01011}

—B) {w€ {0,1} * | w contains at least two 1s }
—C) {wed{e, 1} * | w ends with 11 }

—D) {we {0, 1} * | w ends with 1 }

— E) None of these, or two or more of these



NFA Acceptance

— An NFA N accepts a string w 1f there 1s some
series of choices that lead to an accepting
state

— Consequently, an NFA N rejects a string w 1f
no possible series of cholces lead 1t 1nto an
accepting state

— It's easier to show that an NFA does accept
something than to show that 1t doesn't



e-Transitions

— NFAs have a special - . .
type of transition ) '@ Q

called the e-

transition

— An NFA may follow ALY > °
any number of e-
transitions at any A

time without
consuming any 1nput

Input: b a abb



e-Transitions

NFAs are not required to follow
e—transitions. It's simply
another option at the machine's
disposal



Suppose we run the above NFA
on the string 10110. How
many of the followilng
statements are true?

— There 1s at least one
computation that finishes
1n an accepting state

— There 1s at least one
computation that finishes
1n a rejecting state

— There 1s at least one
computation that dies

— This NFA accepts 10110
— This NFA rejects 10110



Designing NFAs

Part 4/4



Designing NFAs

— When designing NFAs, embrace the nondeterminism!
— Good model: Guess—and-check:

— Is there some i1nformation that you'd really like to
have? Have the machine nondeterministically guess that
information

— Then, have the machine deterministically check that the
cholce was correct

— The guess phase corresponds to trying lots of different
options

— The check phase corresponds to fltering out bad guesses or
wrong options



Guess-and-Check

L={we{0,1}* |wendsin 010 or 101}



Guess-and-Check

L={we{0,1}" |wendsin 010 or 101}




Guess-and-Check

L={we{01}" |wendsin 010
or 101}

— Nondeterministically
guess when to leave
the start state

— Deterministically
check whether that
was the right time to
do so




Guess-and-Check

L={we{01}" |wendsin 010
or 101}

— Nondeterministically
guess when to leave
the start state

— Deterministically
check whether that
was the right time to
do so




Guess-and-Check

L = {w€ {a, b, c} © | at
least one of a, b, or ¢ 1s not
in w 7}



Guess-and-Check

L = {w € {a, b, c¥ © | at
least one of a, b, or ¢ 1s not
in w 7}




Guess-and-Check

L={we{a, b, c} * | -
— Nondeterministically

at least one of a, :
: . guess which character
b, or ¢ 1s not 1n wy} is missing

— Deterministically
check whether that
character 1s 1ndeed
missing




Guess-and-Check

L={we{a, b, c} * | -
— Nondeterministically

at least one of a, :
: . guess which character
b, or ¢ 1s not 1n wy} is missing

— Deterministically
check whether that
character 1s 1ndeed
missing




NFAs and DFAs

— Any language that can be accepted by a DFA
can be accepted by an NFA.

— Why?
— Every DFA essentially already 1s an NFA!

— Question: Can any language accepted by an
NFA also be accepted by a DFA?

— Surprisingly, the answer 1s yes!



See '
- you Iin the



