

Algorithms 2: Machines

* The problem
* Programs
* Flowcharts

 Pseudocode

The problem

* Calculation by hand was boring and error-prone
* Logarithms in particular were hard to work with

e Machines had been invented to do some calculations
* Addition, subtraction, multiplication, division

* The machine could do the calculation, but everything around the calculation was done by
hand
* Which operation to do (addition, subtraction, etc.)
* What values to operate on
* Any decisions that had to be made (e.g., don’t divide by zero)
* Any repetition of operations that needed to be done

The problem

One can imagine the poor mathematician, sitting at a desk trying to find an answer

First they set a number on some dials

Then they set another number on some other dials
Then they hit the “add” button

Then they turn a mechanical crank so the answer shows up on another set of dials

Then they write the answer down so they can use it later

It must have been monotonous
e But at least the answer was right
* As long as they typed in the right numbers and followed the algorithm

The problem

* Eventually Charles Babbage invented a machine called the Analytical Engine
e Around 1830-1870

* The big thing about this was that you could feed it a list of instructions which it could
carry out on its own, rather than having to manually set up the numbers and then press
the operation button and turn the crank yourself

* It could support more complicated instructions like
Here are two numbers, a and b

Add them

Do the following 5 times

Take the result of step 2 and add it to itself

Tell me the answer

Lk e

The problem

* This is a recipe for calculating 6 * (a + b)

* The big change here is that, rather than having a mathematician follow the algorithm and
use the tool for some calculations

* The Analytical Engine allowed for the machine to both follow the algorithm and do the
calculations

* In a very real sense, one was specifying the algorithm to the machine

* Being able to do this was such a good idea that, had anybody understood how good an
idea it was, they would have instantly wanted to use one
e Unfortunately, only Lady Ada Lovelace did

* |t would be a while before Turing put a rigorous mathematical foundation underneath everything
* And even now we are not sure exactly how important an idea this is

The problem

* She decided to make the Analytical Engine calculate Bernoulli numbers
* The Bernoulli numbers are a sequence of numbers with some interesting properties

* People can calculate Bernoulli numbers by hand
e Butitis tedious and time-consuming

 When she started, she had a well-understood algorithm

* The problem was there was a mismatch between the algorithm as it stood, which
humans could do, and the operations the Analytical Engine could do

* Basically, the Analytical Engine needed more instructions, and more explicit instructions,
than people did

* The algorithm had to be spelled out in a lot more detail than it had been before

The problem

* The machine was, simply put, really dumb compared to people

* So how could she express this algorithm so that the Analytical Engine could carry it out?

* And how could she tell other people what she had done?

Programs

This lead to the idea of programs and programming

A program is simply an algorithm that has been spelled out in enough detail that a
machine can carry it out

Programming is the process of creating a program

Programming is hard
* You will spend years learning how to do it

It requires specialized languages that the computer can understand
* Programming languages

We are not concerned here with the properties of programming languages
e Thatis another class

Programs

What does concern us is that programming languages are not a good way for most
people to communicate

If you hand most people a program they will not understand what it does
* The bigger the program, the less likely it is that anyone will understand it

They could, given enough time and patience, carry out the program
e But they still would probably not understand what the algorithm is or what it is for

There are some deep questions here about what it means to “explain” and “understand”
* These are important questions in Artificial Intelligence

But the main point is that programs are not good ways to describe algorithms to people

We need a different way

Flowcharts

A flowchart is a way to express an algorithm

* |tis particularly well-suited to expressing algorithms and computer programs in a way that human
beings can read and understand

Flowcharts are graphical
* There are boxes and lines and symbols and text

They have well-understood conventions
e Certain symbols mean certain things

The best introduction is to look at one

ENTRY

¥

Euclid's algorithm for the
reatest common divisor (ged
of two numbers
—5

INPUT A, B

Flowcharts

Here is a flowchart for Euclid’s algorithm (from
Wikipedia)

Flowcharts

The parts are as follows
ENTRY is where the algorithm starts
The arrow shows where to go next

The oval is a comment
* Not part of the algorithm, it explains what is happening

The box is an operation
* Operations are simple things a computer can do
* For example, read input, arithmetic operations, assign a value to a
variable
The diamond is a decision
* Make the comparison in the diamond
* Follow the yes or no arrow as appropriate

The little balls are just there to show that lines connect and go to the
same place

ENTRY

v

"Euclid's algorithm for the
reatest common divisor (gcd
~.__ oftwonumbers -

¥

INPUT A, B

PRINT A

Flowcharts

There are many different conventions for flowcharts
* They are generally pretty similar

For example:

The text inside the shapes describes what the shapes do or represent
e A guestion for a decision diamond
* A name for a database icon

The text associated with a line describes something about the line
* What had to be true for that line to be followed
* What data is being transmitted when the line is followed

A couple of pictures will illustrate some different conventions

Manual Input

Here is one from Process
zenflowchart.com

Predefined
Input Process Database

Manual
Operation

Document Multidocument] m Q

On-page Reference

Alternate Process j / Data / @ U

Off-page Reference

Flowcharts

And one from
conceptdraw.com

Flowcharts

Terminator
Indicates the beginning

or end of a program
flow in your diagram.

Process

Indicates any
processing function.

Decision

Indicates a decision point
between two or more
paths in a flowchart.

Delay
Indicates a delay in the
process.

Data
Can represents any type
of data in a flowchart.

Document

Indicates data that can be
read by people, such as
printed output.

Multiple documents
Indicates multiple
documents.

Subroutine

ndicates a predefined (named)
process, such as a subroutine or a
module.

Preparation

Indicates a modification to

a process, such as setting a switch
or initializing a routine.

Display

ndicates data that is displayed for
people to read, such as data on

a monitor or projector screen.

Manual input
Indicates any operation that is
performed manually (by a person).

Manual loop

Indicates a sequence of commands
that will continue to repeat until
stopped manually.

Loop limit

Indicates the start of a loop. Flip

the shape vertically to indicate
the end of a loop.

Stored data
Indicates any type of stored data.

Connector
Indicates an inspection
point.

Off-page connector

Use this shape to create

a cross-reference and hyperlink
froma process on one page to
a process on another page.

Off-page connector

Off-page connector

Off-page connector

Or
Logical OR

Summing junction
Logical AND

Collate
Indicates a step that organizes
data into a standard format.

Sort
Indicates a step that organizes
items list sequentially.

Merge
Indicates a step that combines
multiple sets into one.

Database

Indicates a list of information
with a standard structure that
allows for searching and
sorting.

Internal storage

Indicates an internal
storage device.

Flowcharts

Despite differences in details, flowchart formats tend to be pretty similar

For example:

The text inside the shapes describes what the shapes do or represent

e A guestion for a decision diamond
* A name for a database icon

The text associated with a line describes something about the line

* What had to be true for that line to be followed
* What data is being transmitted when the line is followed

There is a great deal of flexibility in how an algorithm can be expressed as a flowchart
* The point is to communicate, not to get the notation exactly right

Flowcharts

 When done well flowcharts can serve as an alternate means of communicating an
algorithm
* They are more detailed and precise than natural language
* They are easier to understand than a programming language

* They can be written at any level of abstraction so you can add or remove details according to the target
audience

* They can be tricky

* |t can be difficult to read a flowchart that is bigger than one page

* |If you simplify things to fit on one page you can lose the precision that was part of the point in the first
place

Flowcharts

 When flowcharts first came into practice it was thought that writing a program would
involve the following steps

1. Think of an algorithm

2. Express itin a flowchart

3. If the flowchart is detailed enough, produce code directly from it
4

. More likely, refine the flowchart by adding boxes and more detail until it is detailed
enough to produce code from

* The flowchart could also be used to communicate with other people about the
algorithm/program

Flowcharts

* One could show it to one’s boss to get approval

e Other programmers could look at it and offer suggestions or help debug

* |t could serve as documentation
e Easier to read and understand than code

* If there were several pages of flowchart it could be divided up so that several
programmers could work on the program at the same time

* |t did not work out this way

|t turned out, once people learned how to write code better, and better programming
languages came along, it was just easier and more accurate to read the code itself

Flowcharts

* There is a notation — the Unified Modeling Language (UML) — that takes the idea of
flowcharts and runs with it

 UML is mostly confined to high-precision, high-stakes projects where every detail must
be specified explicitly and clearly

* Your best bet if you ever have to create a flowchart is to find a program that lets you
easily draw flowcharts

* Many do
* | like yEd
* Your mileage may differ

* For small flowcharts drawing the chart by hand is usually adequate

Flowcharts

When reading a flowchart it can be helpful to use a finger and follow along

When creating a flowchart the same idea applies
* Envision the algorithm as a series of steps that flow one into the other

The key question is “what happens next?”
There are three categories of what can happen next

A simple statement
* Print something, do a calculation, get input

A decision
 Compare two values, ask the user whether to continue

Repeat a previous box
* Go back to some previous spot in the flowchart and do something again

Flowcharts

 When expressing an algorithm as a flowchart:

1.
2.

3.

Try to understand the algorithm yourself before starting to make a flowchart
Start at the beginning and ask “what happens next?”

If that is something new

* Pick the appropriate icon for that box and write it down
* Fill in the box with a description of what is supposed to happen
* Draw a line from the current box to the new one

Otherwise, draw a line from the current box to the already-existing box
* |If the current box is a decision, be sure to do this for both options

Go back to step 2, using the current box rather than the beginning, until you have
covered the entire algorithm

Pseudocode

 Pseudocode is closer to code than flowcharts
It is written in a more linear fashion, as mostly text

 The end result is something that looks a lot more like a program than a flowchart, but
will not actually run on the computer

* The goal in pseudocode is to use various notations that are available to people, but are
not in the computer language being used

* Pseudocode can vary a great deal in how much like code it is
* |tis not nearly as standardized as flowcharts are

This is the pseudocode for a Game of Monopoly, including one person's move as a procedure:

Main Procedure Monopoly Game
Hand out each player's initial money.
PS e u d O CO d e Decide which player goes first.
Repeat
Call Procedure Monopoly Move for next player.
Decide if this player must drop out.
Until all players except one have dropped out.

* Here s pseudocode that is Declare the surviving player to be the winner.

very informal
Procedure Monopoly Move

Begin one's move.

Throw the dice.

Move the number of spaces on the board shown on the dice.

If the token landed on "Go to Jail,"
then go there immediately.

Else if the token landed on "Chance" or "Community Chest,6"
then draw a card and follow its instructions.

Else
follow the usual rules for the square (buying property,
paying rent, collecting $200 for passing "Go", etc.).

End one's move.

Pseudocode

* This pseudocode is much
more formal

* Note that, despite the
mathematical specificity,
it still will not run as a
program

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, €); input features {x,,, Vv € V}; depth K; weight matrices
WFE Vk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEy, Yk € {1, ..., K'}; neighborhood function N : v — 2Y

Output : Vector representations z,, for all v € V

h + x,,Yv e V;
fork=1...K do
for v € Vdo
h},,) < AGGREGATE.({h}™",Vu € N'(v)});

h* + o (W" - CONCAT(h*—1, hf'v(v)))

W N -

W

end
ht < hi/|[hf|l2, Vo € V

end
z, — hE Vo eV

L—J- I B)

Figure 1: graphs

Pseudocode

Ideally, one could translate
(more or less) directly from
pseudocode into code (and
back again)

Example usage

7 T; Yi
1 in function main int main() {
2 let n be integer int n;
3 read n cin >> n;
4 let A be vector of integers vector<int> A;
5 set size of A=n A.resize(n);
6 read n elements into A for(int i = 0; i < A.size(); i++) cin >> A[i];
7 for all elements in A for(int i = 0; i < A.size(); i++) {
8 set min_1to i int min_i = 1i;
9 forj =1+ 1 to size of A exclusive for(int j = i+1; j < A.size(); j++) {
10 set min_i to j if A[min_i] > A[j] if(A[lmin_i] > A[j]) { min_i = j; }
11 swap A[i], A[min_i] swap(A[i], Almin_i]);
12 print all elements of A for(int i=0; i<A.size(); i++) cout<<A[i]<<" ";
}
Public test case 1 (out of 5): 532415 — 12345
Hidden testcase 1 (outof 8): 892456271 — 122456729

Figure 1: Given L pseudocode lines x1.;, (with indentation levels #;.;) and public test cases, our task
is to synthesize a program with code lines y;.;,. The program is evaluated against both public and

hidden test cases.

Pseudocode

When translating from code to pseudocode a few guidelines are useful

Try to leave out language-specific wording
* Note how the previous example changes loops to “do this n times” or “do this for all x”

Type declarations can be relaxed or eliminated

Typography can be relaxed
* Programming languages do not support subscripts, superscripts, integration signs, or the like
e But they are fine in pseudocode

Understand your target audience

* Do not put a bunch of math into pseudocode meant for a general audience
» Just describe what the equation is supposed to calculate

