Program: BSc Computer Science

Course code: BCS1110

Examiners: dr. Ashish Sai & dr. Thomas Bitterman

Date/time: 24-Oct-2023, 17:00 to 19:00

Format: Closed book exam

Allowed aids: Pens, simple (non-programmable) calculator from the DACS list of allowed calculators

Sample Exam Paper

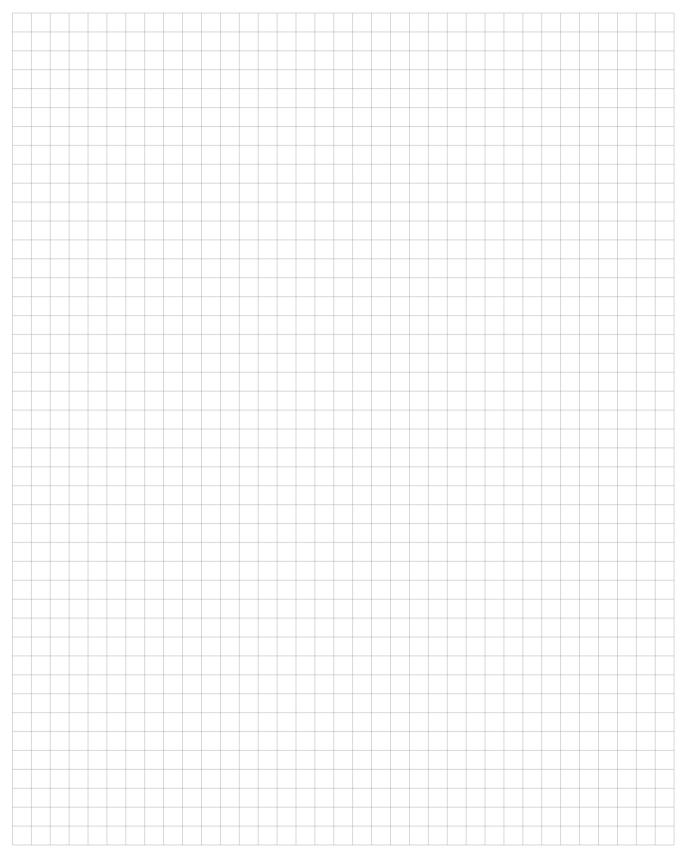
BCS1110 2023/24

[©] Copyright 2023 - dr. Ashish Sai & dr. Thomas Bitterman - you are not allowed to redistribute this exam, nor any part thereof, without prior written permission of the authors

Multiple Choice Question

Instructions: For the following multiple-choice questions (MCQs), only one answer is correct. Please select the most appropriate option.

	•••
3р	1a Example multiple choice question. I think the instructor for this class is really mean because:
	 a He gives us really long, mean assignments b He makes us show up for class on time c He asks mean multiple choice questions d None of the above. He is, in fact, sweet and charming
3р	1b According to Moore's Law, approximately how often was the number of transistors on a computer chip supposed to double?
3р	 a Every 1 year b Every 2 years c Every 5 years d Every 10 years 1c In a deterministic finite automaton (DFA), what is the number of transitions defined for each symbol in the alphabet for every state?
	 a Zero b One c More than one d Two
3р	1d Which service is NOT typically part of Amazon's AWS? a Amazon S3 (Cloud Storage) b Amazon Kindle c Manages Servers d Website Hosting


3р	1e Which of the following is NOT a common method used in Two-Factor Authentication (2FA)?
	a Something you know (password)
	b Something you have (mobile device)
	© Something you like to eat (a type of food)
	Something you are (fingerprint)
3р.	1f Which encryption uses a different key for encrypting and decrypting data?
	a Symmetric
	b Asymmetric
	© Monometric
	d CSRF
3p con	Course Theme and Computing Hardware 2a Identify some advantages and disadvantages of a using a Biometric authentication system in a npany (Hint: think about privacy)?
	ζ,

. (01101) ₂ . (011110) ₂		
(1011000)2		
. (111111) ₂		
(1101) ₂ (111110) ₂		
$(1111110)^2$		

6p **2b** Convert the following binary numbers to decimal:

diagram for this system (2d).

4p **2d** :



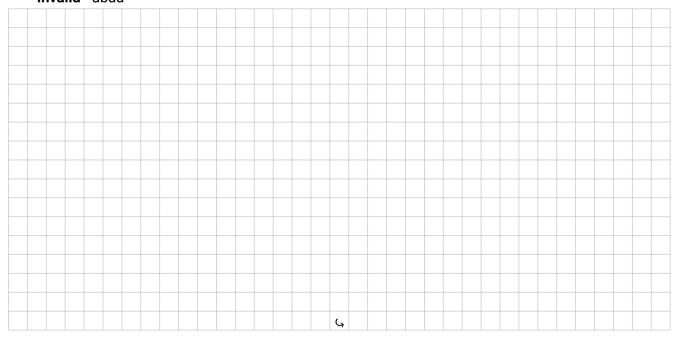
Algorithm and version control

4p **3a** Name a type of algorithm that is not a program

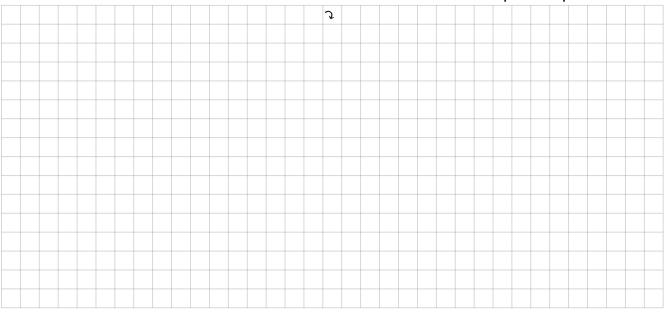
 71	•			

3b: Create a flowchart and pseudocode for the process of getting ready to leave the house in the morning. Include such activities as hitting the snooze button several times, taking a shower, getting dressed, and so on. Make sure to have different procedures depending on whether it is a weekday or weekend

Theory of Computation


1p	4a	Explain the	concept o	f closure	properties	of regular	languages.
----	----	-------------	-----------	-----------	------------	------------	------------

4b Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a nonempty string whose characters alternate$


between a's and b's }. Design a DFA whose language is L.

Some example inputs for this automata:

Valid - ababababa Invalid - abaa

Sample Exam Paper BCS1110 - 2023

6p **4c** Let Σ = {a, b} and let L = {baa}. Design a DFA for L.

4p	58	a	Explain	what is	iPv4. \	Why w	as the	ere a r	need to	move	from	IPv4 to	o IPv6	?	
	5b W used?	hat ar	e the d	ifferent	types	of IP	addre	sses	(static	, dyna	mic) a	nd wh	nere a	re the	y typical
_															

Computer Networks

				Ouiii	pie Exam Paper BCS i i
14/by do 14	a need a transport!	over in TOD/ID	2 Name at least i	tuus protosolo.	موردها ونطع مناهوه
z wny ao w	ve need a transport la	ayer in 10P/IP	? Name at least i	two protocois u	sea in this layer
					

Information Security

4p

4p

	urity compared to single-factor authentication.
)	Explain how Social Engineering attacks occur. Include examples and discuss preventive
	measures that can be taken.

Sample Exam Paper BCS1110 - 2023

	e a type of attack a e name of the attac	• .	•	•	
bad for a us		,,, a ee.t aeee.	.po o. are atta	ion and mily and	., po or attack oout

Project (JavaCraft)

As a part of this course, you worked on a group project titled **JavaCraft**. In the following questions (7a, 7b and 7c), you should provide answers based on your work on the project.

2p **7a** In order to get which flag to draw, you had to call a function to interact with a website. Can you name this function (or the command you would enter to invoke this function)? If your group did draw a flag, please name the flag you drew.

nag, please name the hag you drew.	

7b You had to design a Finite State Automata as a part of your secret door logic, can you draw the FSA you submitted with your project (the FSA does not have to be accurate, we will accept it as a valid solution as long as it somewhat resembles your submission).

2p	7c	Can you name the new blocks you included in your source code?