
Computer Science 1

Lecture 2
d.camporaperez@maastrichtuniversity.nl

Variables - Learning Goals
• You know the difference between a constant and a variable and

know when to use which one
• You know how to name, declare, and instantiate variables
• You can use variables in your code effectively using operators
• You know properties about variables and constants such as data

types and scope
• You know about casting, how and when to use it. Pitfalls and

possible errors.

Variables and Values

• A variable is a place in memory that we can
reference

• A value is what a variable can hold

 int x = 3;

Variable ValueData Type

Assignment
operator

Variables - Operators
Operators are operation we can perform on variables and values.
1. Parentheses ()
2. Unary operators ++ -- !
3. Multiplicative operators * / %
4. Additive operators + -
5. Relational ordering < > <= >=
6. Relational equality ==
7. Logical and &&
8. Logical or ||
9. Assignment =

Variables - Declaration

To use a variable, you have to declare it.
Java naming convention1: camelCase or PascalCase

datatype variableName,…,variableName;

int i,j,k;
int numberOfStudents;
double temperature, volume, pressure;
String name;

1. https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html

Variables - Expressions
Syntactically correct combinations of variables,
constants, operators, method invocations and values
that evaluate to a single value.

For instance:
b * 3 + c;
!a && (b < 3);
c = Math.pow(a, b) + 5;

Exercise together – What can we print? (2a)
• Create a file with a <class name> and .java extension.
• Create a public class <class name> inside the file, with

a public static void main(String[] args) method.
• Use the operation System.out.println() to print:

She said "Hello!" to me.
12 + 20 is 32

Variables - Casting

Converting the type of a value of an expression to
a new type.

int a = (int)(3.14 * 5); (a is now 15)

double b = 3.14;
int c = (int)(b * 12.3); (b is now 38)

Narrowing and widening data types
• We can distinguish between narrowing a datatype:

int a = (int)(3.14 * 5);

• And widening the datatype:

double a = (double)(3 * 5);

Beware of casting – Ariane 5, 1996
On 4 June 1996, the maiden flight of the Ariane 5 launcher
ended in a failure. Only about 40 seconds after initiation of the
flight sequence, at an altitude of about 3700 m, the launcher
veered off its flight path, broke up and exploded.

The failure of the Ariane 501 was caused by the complete loss of
guidance and attitude information 37 seconds after start of the
main engine ignition sequence (30 seconds after lift-off). This
loss of information was due to specification and design errors in
the software of the inertial reference system.

The internal SRI software exception was caused during
execution of a data conversion from 64-bit floating point
to 16-bit signed integer value. The floating point number
which was converted had a value greater than what could be
represented by a 16-bit signed integer.

Exercise together – Casting exercise (2b)

• What are the results of…

11/3
11/3.0
11.0/3.0
(4 == 4.0) && (-5.6 < 0)
'a’+10
"a"+10

Exercise together – Integer limits (2b)

• What are the integer limits?
• What happens if we try to represent a too big

number in an int?
• And if we add two numbers surpassing that

limit?

Constants
• Allows the use of a name for a memory location with a

fixed value (i.e. can not be changed by the program).
Use to avoid “Magic values”

• Use the final keyword
e.g. final double BOILING_POINT = 100.0;

• Naming guidelines: ALL_CAPITALS

Why use constants?

Magic number

Why use constants? (2)

Check Lecture2c.java before proceeding

Variables - Scope
• Local variables are available (“exist”) during the

execution of the block in which they are declared.

• Blocks are any lines of code that are surrounded by
 {
 …
 }

Variables - Scope

j lifetime

k (and args)
lifetime

compilation error

compilation error

17

Variables - Garbage Collection

• When a variable’s scope ends, it is still
somewhere present in memory (RAM), even
though it cannot be accessed anymore.

• The Garbage Collector will remove the value
from memory for dynamically-allocated values.

Exercise together – How can we extend the lifetime of
a variable (2d)

• Create one block of code where you calculate the area of a
rectangle.

• Create another block of code where you print ”The area of
rectangle X by Y is Z square meters.”

• How can we reuse the variables from the first block in the
second block?

Assignment operator
= assigns (stores) the value of an expression (in)to a variable

<variable name> = <expression>;

The variable type has to match the expression type (although type
widening is often automatic)

 E.g. int width, height;
 double area;
 width = 5;
 height = 3;
 area = width * height / 2.0;

Variable instantiation / initialization
= assigning an initial value (during declaration)
e.g. boolean a = true;
 int width = 5, height = 3;
 boolean result = !a && (height < 5);
 double area = width * height / 2.0;

Forgetting to initialize before use will lead to compilation error!
 e.g. int x, y;
 x = y*y;
 leads to:
 Tmp.java:8: variable y might not have been initialized x = y*y;

Assignment ≠ Equality

4

+1

4

int x;

x = 4;

x = x+1;

x

x

x

4

5

4

+1

5

Shortcuts:
x++; is same as x = x+1;

x+=3; is same as x = x+3;
also for x--; and x-=3;

Exercise together – Swap values
• Let’s write a program where we have two

variables (say x which is 5 and y which is 10)
and we want to swap their values.

• Sounds easy…?

Methods - Learning Goals
• You know how to declare methods
• You know how to group reusable statements into

methods
• You know what a parameter is and how to use them
• You know how to return values from a method
• You know the terminology related to methods

Methods
• Groups related statements that re-occur together in a

task

Methods have a
- name
- input called “parameters”
- output called “return value”
- body

Methods - Declaration

public int sum(int a, int b) {
 return a + b;
}
…
int z = obj.sum(1, 5);

Access Modifier
(learnt later) Return Type Method name Parameters

Body

Method
(call / invocation)

Object
(learnt later)

Defining a method

Check Lecture2e.java before proceeding

return type method name

parameters

return statement

Things Java doesn’t care about… but we might
1. Method name
2. Parameter names
3. Variable names
… as long as they match up!

More things Java does not care about
4. Method order

Methods – Return Statement
• return <result_expression>;

• Ends the execution of the method and returns a value
• Expression type must match return type of method
• Mostly (only) occurs as last statement (compiler will complain if it does not)

• Special case: return type “void”
- meaning: no return type
- consequence: no return statement
- can still use “return;” to end method execution; often considered bad form

Method – Parameters
(<type1> <name1>, <type2> <name2>, …)

Input the method needs to compute the correct
result

• comma separated list of variables with their
type; declared between parentheses

• list can be empty, brackets are still required
• lifespan = duration of the method call

Overloading
In Java, methods are identified by the combination of name

and parameter types

Overloading is defining methods with the same name but
different parameter counts or types

Overloading (2)
The return type of a method is NOT part of its

identity!!

Compilation Error!

Calling a method

Calling or invoking a method executes the body of the
method and allows collecting the results

• factual parameter values have to match the type of the
method definition (or be able to become the correct
type through widening)

• “pass-by-value”: values are copied
• collecting the result is done by assigning the method

expression to a suited variable

Pass by value

x … a…3

Check Lecture2f.java before proceeding

Show of hands

• What is printed in the output
of this code?

• 3
• 44
• doSomething
• Nothing

Local variables

Additional variables can be defined inside a
methods body

• lifetime is the execution of the method
(as for parameters)

 or the surrounding block as always

Trouble?

Lifespans do
not overlap: no
connection
between the
two names!

Nope!

Control Flow & Variable Scopes

x
y
result

x
y
result

Check MethodCaller.java before proceeding

Math Library

Math.<method>(<parameters>)

E.g. Math.sqrt(x)
 Math.min(x,y)
 Math.exp(x)
 Math.pow(x,y)
 Math.cos(x) (radian! – Math.toRadians(x))
 Math.round(x)

Look at Java API!!
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Math.html

Check FunWithMath.java before proceeding

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Math.html

Reading input
For most of this course: command line or terminal

In Java 5.0, Scanner was added to read keyboard input
• nextInt() reads an int
• nextDouble() reads a double
• nextLine() reads a line (until <enter>)
• next() reads a word (until any white space)

Scanner is not a “library” like Math, but requires
instantiation(=declare it, like we do with variables)

Using Scanner

Check ComplexHelloWorld.java before proceeding

Summary
• Variables
- declaration, initialization, lifespan
- assignment, expressions

• Methods
- definition and invocation, parameters

• Book: Chapters 2 & 5 (check canvas for details)
• Quizzes: 1b & 2
• Homework: Tasks 1 to 12

The Upcoming Practical
• This Friday!
- Study the slides, book chapters, quiz 1b and 2, homework

before the lab!

• On variables and methods
- Make sure that you have reached all learning goals after this

week.
- Learning to program requires knowledge of the basics, on

which you can build ever more complex structures.

