
@@export_scripts@@

COMPUTING
HARDWARE
BCS1110

!

 Week 1 - Lecture 2

"

 

#

 PHS1 C0.020

Dr. Ashish Sai

bcs1110.ashish.nl

email:ashish.sai@maastrichtuniversity.nl
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/bcs1110.ashish.nl


@@export_scripts@@

Plan for today

Building blocks of a computer–

Abstraction in Hardware–

Arithmetic Logic Unit–

Computing Hardware Overview–



@@export_scripts@@



@@export_scripts@@

Roller Chain



@@export_scripts@@

Building blocks of a
computer

Part 1/4



@@export_scripts@@

Computers are constructed using individual

transistors, which form circuits that enable

various operations and logic



@@export_scripts@@

Transistors

A transistor is an electronic device made of semiconductor materials  that

can amplify or switch electronic signals and electrical power

– 1

It consists of three layers (emitter, base, and collector) and can control the

flow of current by applying a small input signal

–

Base

Collector

Emitter

Semiconductor

Semiconductors are materials that have properties in between conductors (which allow the flow of
electricity easily such as metals) and insulators (which block the flow of electricity such as ceramics)

1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

If enough voltage is applied to the base electrode,

current can flow between emitter and collector and the

transistor can like a switch 

⏯

C

E

B

C

E

B



@@export_scripts@@



@@export_scripts@@

iPhone 14

Has over
16,000,000,000

transistors (switches)

–

to count from 1 to 16B
would take you about
one thousand and

seventeen years!

–



@@export_scripts@@

Combining Transistors

You can do quite a lot when

you combine these

transistors

A

B

Light

Truth Table

A B Light

True True True

True False False

False True False

False False False



@@export_scripts@@

Current and Bits

Current is the flow of electric charge

through a conductor, like a wire, measured

in units of amperes (A)

When current flows: 1 

✅

–

When current is not flowing: 0 

⛔

–



@@export_scripts@@

AND Gate1

A

B

Light

Truth Table

A B Light

True (1) True (1) True (1)

True (1) False (0) False (0)

False (0) True (1) False (0)

False (0) False (0) False (0)

There are many different ways to draw this1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

What else can we do with

these transistors?

Put them next to each

other!

This is an OR gate
A

Light

B



@@export_scripts@@

OR Gate1

A

Light

B

Truth Table

A B Light

True (1) True (1) True (1)

True (1) False (0) True (1)

False (0) True (1) True (1)

False (0) False (0) False (0)

There are many different ways to draw this1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

There is a lot that goes on
with a transistor and gates,
we only scratch the surface
in this course



@@export_scripts@@

THE THREE BASIC GATES AND
THEIR SYMBOLS
And Gate

A B Output

1 1 1

1 0 0

0 1 0

0 0 0

OR Gate

A B Output

1 1 1

1 0 1

0 1 1

A

B

A . B

A

B

A+B

NOT Gate

A Output

1 0

0 1

A A'



@@export_scripts@@

XOR Gate

A B Output (A XOR B)

0 0 0

0 1 1

1 0 1

1 1 0

A

B

A⊕⊕B

Boolean Algebra

Boolean algebra is a mathematical
system that deals with true and false
values, represented as 1 and 0

–

It provides a framework for
manipulating logical expressions using
operators like AND, OR, and NOT

Boolean Expression for XOR Gate:

A.B’+A’.B

–



@@export_scripts@@

Combinational Circuits

XOR: A.B’+A’.B

A

B

C



@@export_scripts@@

Abstraction in
Hardware

Part 2/4



@@export_scripts@@

Abstraction in hardware design

Map hardware devices  to Boolean logic– 1

Design more complex devices in terms of

logic, not electronics

–

Conversion from logic to hardware design

may be automated

–

Such as the combinational gates you just looked at1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

Some Background: Binary Number System

Humans use Decimal number system–

7809 = 7×10  + 8×10  + 0×10  + 9×10– 3 2 1 0

Each digit is from {0,1,2,3,4,5,6,7,8,9} – Base 10–

(We happen to have ten fingers 

!

)–

Computers use Binary number system–

(1101) = 1×2  + 1×2  + 0×2  + 1×2  = 13– 3 2 1 0

Each binary digit (bit) is {0,1} – Base 2–

(IT people have 2 fingers )– 1

not really!1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

Convert Decimal
Number 

!

 to Binary 

"

Conversion steps:

Divide the number by 2–

Get the integer quotient for the

next iteration

–

Get the remainder for the binary

digit

–

Repeat the steps until the

quotient is equal to 0

–

Example:

Division

by 2 Quotient Remainder Bit #

13/2 6 1 0

6/2 3 0 1

3/2 1 1 2

1/2 0 1 3

So 13  = 110110 2



@@export_scripts@@

Convert Binary  to Decimal Number 

For binary number with n digits:

The decimal number is equal to the sum of binary digits (d ) times their power of 2 (2 ):

Example:

Find the decimal value of 111001 :

binary number: 1 1 1 0 0 1

power of 2: 2 2 2 2 2 2

1110012 = 1⋅ 2  + 1 ⋅ 2  + 1 ⋅ 2  + 0 ⋅ 2  + 0 ⋅ 2  + 1 ⋅ 2  = 57

d ...d d d dn−1 3 2 1 0

n
n

decimal = d ×0 2 +0 d ×1 2 +1 d ×2 2 +2 ..

2

5 4 3 2 1 0

5 4 3 2 1 0
10



@@export_scripts@@

Creating a calculator capable of
adding two numbers using a
combinational circuit

Part 3/4



@@export_scripts@@

Easy Case: 2 Digit Addition
A B Output (A+B) C S

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 2 1 0

For now, we only add two digits without a carry forward number

You need one AND gate and XOR gate to get this output



@@export_scripts@@

Half Adder (HA)

A B C D

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A

B

C

S



@@export_scripts@@

More abstraction (Handling the carry bit)

A B C S (Sum) C (Carry)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

HA
HA

A

B S
S

S

C
CC



@@export_scripts@@

8 Bit Full Adder 1

Half Adder

S0

B0A0

Cout 0

Full Adder

S1

B1A1

Cout 1

Cin 1

Full Adder

S2

B2A2

Cout 2

Cin 2

Full Adder

S3

B3A3

Cout 3

Cin 3

Full Adder

S4

B4A4

Cout 4

Cin 4

Full Adder

S5

B5A5

Cout 5

Cin 5

Full Adder

S6

B6A6

Cout 6

Cin 6

Full Adder

S7

B7A7

B0A0B1A1B2A2B3A3B4A4B5A5B6A6B7A7

S8

S0S1S2S3S4S5S6S7S8

Cin 7

This is the most complex adder we would see in this class1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

Calculate: 153+75

Binary: 10011001+01001011

Half Adder

S0

B0A0

Cout 0

Full Adder

S1

B1A1

Cout 1

Cin 1

Full Adder

S2

B2A2

Cout 2

Cin 2

Full Adder

S3

B3A3

Cout 3

Cin 3

Full Adder

S4

B4A4

Cout 4

Cin 4

Full Adder

S5

B5A5

Cout 5

Cin 5

Full Adder

S6

B6A6

Cout 6

Cin 6

Full Adder

S7

B7A7

B0A0B1A1B2A2B3A3B4A4B5A5B6A6B7A7

S8

S0S1S2S3S4S5S6S7S8

Cin 7



@@export_scripts@@

➕➖✖➗

You already know how to add–

You can also build subtractor– 1

You can substitute multiplication with

addition (5*4 is 5+5+5+5)

–

You can substitute division with subtraction–

We do not cover subtractors in this course1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

Arithmetic Logic
Unit
Part 3/4



@@export_scripts@@

The ALU combines multiple full adders
and additional logic circuits to perform
arithmetic and logical operations (AND,
OR, XOR and even more) 

!

A B

O S

R



@@export_scripts@@

A B

O S

R

Number 1 Number 2

Opcode

Result

Status
Zero

Negative
Overflow

ADD
SUB
AND
OR

XOR
....



@@export_scripts@@

Opcode
Opcode Instruction

0000 A AND B

0001 A OR B

0010 A XOR B

0010 NOT A

0100 ADD A+B

0101 SUB A-B

O = 0100
A = 00001010 & B = 01011101
R = ?

A B

O S

R



@@export_scripts@@

What do you do when you
have to perform
multiplication?
(Or anything that requires more than one
instruction)



@@export_scripts@@

More Abstraction
CPU

Central Processing Unit

Part 3/4



@@export_scripts@@

Control Unit

Register A Register B

ALU
RAM



@@export_scripts@@

Control Unit

The control unit receives instructions from

memory and controls the flow of data within

the CPU

–

It interprets opcode (operation code) to

determine the operation to be performed by

the ALU or memory

–



@@export_scripts@@

Memory and Random Access Memory
(RAM)

Registers are temporary storage units within the CPU

that hold data during processing

–

RAM (Random Access Memory) stores data and

instructions that the CPU accesses during execution

–

Data and instructions are loaded from RAM into the

CPU registers for processing

–



@@export_scripts@@

Instruction Set

Instruction sets are collections of binary-coded instructions that a computer's
CPU can execute

–

These instructions represent specific operations like arithmetic, memory
access, and control flow

–

There are two main types: RISC with simple instructions for faster execution
and CISC with more complex instructions to reduce program size

Different processors use specific instruction sets optimized for

various applications and performance requirements

–



@@export_scripts@@

Instruction Set Example
Intruction Opcode Memory Location Description

ADD 0 0 0 1 2* 2-bit register ID Add two numbers

AND 0 0 1 0 2* 2-bit register ID Add operation

LOAD_A 0 1 1 0 4-bit memory address Load memory address in register A

LOAD_B 0 1 1 1 4-bit memory address Load memory address in register B

STORE_B 1 0 1 1 4-bit memory address Write register A into memory address

HALT 0 1 0 0 N/A Halt the program

1

Result is stored in the second register1.

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1


@@export_scripts@@

Let’s write your first program

Program to add two numbers

Load numbers into registers from RAM
1.1 Locate the number in RAM (use LOAD_A & LOAD_B Opcode)
LOAD_A + address 1  -> 0110 1110
LOAD_B + address 2  -> 0111 1111

1.

Add the values at register A and B
Add opcode + 2 register IDs  -> 0001 01 10

2.

Save our result into the RAM
STORE_B + memory address  -> 1011 1101

3.

Stop the program
HALT  -> 0100

4.



@@export_scripts@@

Congratulations! You just wrote your first

program in machine language (code)

0110 1110
0111 1111
0001 01 10 
1011 1101
0100



@@export_scripts@@

Machine Language
Machine language consists of binary instructions (1s and 0s)
that the CPU can directly execute

–

Each instruction is represented by an opcode, specifying the
operation, and memory addresses for data access

Very difficult for humans to work with machine

code! -> Use abstraction - high level

programming languages such as C, C++ and Java

–



@@export_scripts@@



@@export_scripts@@



@@export_scripts@@

Computer
Dissection

!

 

"

Part 4/4



@@export_scripts@@

Central Processing Unit

The CPU is the computer's brain

!

–

It consists of an integrated 

♨

 heat

spreader cover, a metal package

holding the integrated circuit

(die), and a printed circuit board

for connection to the

motherboard

–

The die contains various sections,

including cores for executing

programs and instructions

–



@@export_scripts@@

CPU Functional Sections

The CPU has additional sections, such as shared
L3 memory cache, integrated graphics processor,
memory controller, and system agent/platform I/O

–

The memory controller manages data transfer to
and from DRAM, while the system agent facilitates
communication with the motherboard chipset

–



@@export_scripts@@

Intel Ivy Bridge 

!



@@export_scripts@@

!

 Apple M1



@@export_scripts@@

Motherboard

A large printed circuit

board with numerous

wires and various

microchips, components,

sockets, ports, slots,

headers, and connectors.



@@export_scripts@@

Motherboard for a laptop 

!



@@export_scripts@@

Power Supply

The power supply unit

(PSU) distributes power

throughout the computer

–

It contains a main

transformer, control PCB,

switching power

transistor, and various

components for voltage

regulation and output

stability

–



@@export_scripts@@

CPU Cooler CPU cooler includes a

pump, tubes, radiator, and

fans to dissipate heat

generated by the CPU

The liquid circulates

through the system,

transferring heat to the

radiator, and then the fans

cool the liquid



@@export_scripts@@

GPU

The GPU is the brain of the computer's graphics capabilities–

It consists of a PCB, integrated circuit (IC), VRAM chips, voltage regulator

module, and cooling system

–

The GPU IC contains billions of transistors and performs parallel

processing using multiple cores

–



@@export_scripts@@

Storage 

!

Part 4/4



@@export_scripts@@

Dynamic Random
Access Memory

The CPU communicates

directly with the DRAM

through memory channels

on the motherboard

–

DRAM chips store data

temporarily and use

capacitors and transistors

organized into 2D arrays

–



@@export_scripts@@

Solid-State
Drives (SSDs)

SSDs store data

permanently using 3D

arrays of memory cells

called 3D NAND

–

These arrays are stacked

within a single SSD

chip, enabling the

storage of terabytes of

data

–



@@export_scripts@@

Hard Disk Drives
(HDDs)

HDDs use spinning disks
and read/write heads to
access data stored on
magnetic surfaces.

–

The read/write head moves
across data tracks to read
or write information

–



@@export_scripts@@



@@export_scripts@@

Conclusion

Building blocks of a computer–

Construction of an Arithmetic Logic Unit
(ALU)

–

Central Processing Unit (CPU)–

Computing Hardware Overview–



@@export_scripts@@

SEE YOU IN
THE LAB! 

!


