
| Department of Advanced Computing Sciences

Procedural Programming

Theory Week 1

| Department of Advanced Computing Sciences

Learning objectives

• You know the four components of the Von Neumann
Architecture

• You understand the execution cycle on the Von Neumann
Architecture

• You understand the binary representation
• You know the basics of assembler
• You know the difference between assembly and high-level

programming languages
• You know the difference between compilation vs interpreted

code

| Department of Advanced Computing Sciences

Let’s take it from the start

• What is a computer?

• “A device that computes…
especially a programmable electronic machine
that performs high-speed mathematical or
logical operations or that assembles, stores,
correlates, or otherwise processes information”
- From American Heritage® Dictionary of the English

Language, 4th Edition

| Department of Advanced Computing Sciences

The first computers

• Scales – computed relative weight of two
items
– Computed if the first item’s weight was less

than, equal to, or greater than the second
item’s weight

• Abacus – performed mathematical
computations
– Primarily thought of as Chinese, but also

Japanese, Mayan, Russian, and Roman
versions

– Can do square roots and cube roots

| Department of Advanced Computing Sciences

Basic computer architecture

| Department of Advanced Computing Sciences

Von Neumann Architecture

| Department of Advanced Computing Sciences

Von Neumann Computer

• 4 components
1. Control Unit

2. Arithmetic/Logic Unit

3. Memory

4. Input/Output

• Stored program concept
• Sequential execution of instructions

| Department of Advanced Computing Sciences

Memory

Functional unit of a computer that stores and can
retrieve instructions and data
• Consists of circuits that represent cells capable

of storing N bits
• Each cell has
- an address

- content

1 1 0 1 0 1 1 01 0 1 1

N bit architecture
(8, 16, 32, 64)

| Department of Advanced Computing Sciences

Internal memory

• RAM (random access memory)
- reading and writing data and instructions

- volatile

• ROM (read only memory)

Each cell has unique address

Fast! 10-15 nsec (1 nano second = 10-9 sec)

1 1 0 1 0 1 1 01 1 1 1
1 0 0 1 0 1 1 11 1 1 0
0 1 0 1 1 1 0 01 1 0 1
0 1 0 0 0 1 1 11 1 0 0

1 1 0 1 0 1 1 00 0 0 1
0 0 0 1 1 0 0 00 0 0 0

… …

| Department of Advanced Computing Sciences

External Memory

Mass storage devices
• (Direct) access
- USB flash drives

- solid state drives

- hard disks

- optical disks

• Sequential access
- tape drives

| Department of Advanced Computing Sciences

What’s a floppy?

(Wikipedia)

Their size (3.5-Inch) was 1.44MB!

| Department of Advanced Computing Sciences

Binary Representations

• What?
- everything inside a computer

numbers, text, programs, pictures, music, video, …

• Why?
- information is stored using voltage levels

- using decimals requires 10 reliable distinct levels

- much cheaper to only use 2 levels (but more

components)

| Department of Advanced Computing Sciences

Bits, Bytes,

1 byte 8 bits
1 kilobyte (KB) 210 = 1024 bytes
1 megabyte (MB) 220 = 1048760 bytes
1 gigabyte (GB) 230 = 1073741824 bytes
1 terabyte (TB) 240 = 1099511627776 bytes
1 petabyte (PB) 250 bytes
1 exabyte (EB) 260 bytes
1 zetabyte (ZB) 270 bytes
1 yottabyte (YB) 280 bytes

Size of the entire WWW is 1 yottabyte (280 bytes)

It would take approx. 11 trillion years to download a yottabyte file from the internet
using a high-power broadband connection

| Department of Advanced Computing Sciences

Decimals

Base 10
(based on our number of fingers?)

• Decimal digits: 0,1,2,3,4,5,6,7,8,9

• Positional system – position represents power

Example:
384510 = 3x103 + 8x102 + 4x101 + 5x100

| Department of Advanced Computing Sciences

Binary

Base 2

• Binary digits (bits): 0,1
• Similar positional system – different base

Example
11012 = 1x23 + 1x22 + 0x21 + 1x20 = 1310

| Department of Advanced Computing Sciences

Negative numbers?

Leftmost bit of a number represents the sign

0 for +

1 for - 1 1 0 1 0 1 1 0

0 1 0 1 0 1 1 0 = + 8610

= - 8610

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

| Department of Advanced Computing Sciences

Arithmetic overflow

Trouble arises when the result requires more than the

number of available bits…

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1+ = ?

| Department of Advanced Computing Sciences

Floating point numbers

• But, how can we represent the decimal
numbers?

0 1 0 0 0 1 0 1

Sign Exponent Mantissa

https://www.geeksforgeeks.org/introduction-of-floating-point-representation/

!"#$% = 1.0101! ∗ 2"

= 1 + 14 +
1
16 ∗ 2"

= 1 + 5
16 ∗ 2"

= 1 + 5
16 ∗ 2"

= 21 ∗ 2#$

≈ 2.625

https://www.geeksforgeeks.org/introduction-of-floating-point-representation/

| Department of Advanced Computing Sciences

ASCII & UNICODE

• Also text uses a binary representation

• Each character is translated into a bitstring

- ASCII uses 8 bits
- UNICODE uses 16 bits

ASCII examples: A = 01000001 a = 01100001

@ = 01000000 ÿ = 11111111

01010111 01100101 01101100 01100011
01101111 01101101 01100101 00100001

Welcome!

https://www.ascii-code.com/

https://www.ascii-code.com/

| Department of Advanced Computing Sciences

Input/Output controllers

Treated as part of memory space
- need to compensate for speed differences

| Department of Advanced Computing Sciences

Execution cycle

1. Fetch instruction

2. Decode instruction
3. Execute instruction

Repeat

| Department of Advanced Computing Sciences

Modern Computer Architecture

... is a bit more complex ...

... but the principles remain the same

| Department of Advanced Computing Sciences

Arithmetic/Logic Unit (ALU)

Performs primitive arithmetic and logic operations
- Registers

- ALU circuit

| Department of Advanced Computing Sciences

Control Unit (CU)

Implements the sequential execution of instructions

• program counter
• fetches instructions
• decodes instructions
• ensures execution

Processor = ALU + CU

| Department of Advanced Computing Sciences

Machine Language

Language/representation used for instructions
inside the computer

Instructions or opcodes for:
- input and output

- moving data between RAM and registers

- arithmetic and logic operations

- comparisons and conditional outcomes

1 0 … 1 0 1 1 0 1 0 1 … 0 1 1 1

operation code operands/address field(s)

| Department of Advanced Computing Sciences

Instruction Set Examples
Binary opcode Instruction

0000 LOAD X
0001 STORE X
0010 CLEAR X
0011 ADD X
0100 INCREMENT X
0101 SUBTRACT X
0110 DECREMENT X
0111 COMPARE X
1000 JUMP X
1001 JUMPGT X
1010 JUMPEQ X
1011 JUMPLT X
1100 JUMPNEQ X
1101 IN X
1110 OUT X
1111 HALT

| Department of Advanced Computing Sciences

Assembler

A human readable representation of

machine language

Can differ for each specific processor

Instruction

LOAD X
STORE X
CLEAR X
ADD X
INCREMENT X
SUBTRACT X
DECREMENT X
COMPARE X
JUMP X
JUMPGT X
JUMPEQ X
JUMPLT X
JUMPNEQ X
IN X
OUT X
HALT

| Department of Advanced Computing Sciences

Assembler programming

Programming in assembler is possible …
but not recommended if sanity is something you enjoy or value
• microscopic view of tasks

• manual management of data movement

• machine-specific

• only used for ultra-high-performance requirements

of small subroutines

| Department of Advanced Computing Sciences

High-level programming languages

Each language statement can correspond to many
machine instructions
• (more) macroscopic view of a task

• (more) portable between machines

• closer to natural language descriptions

Assembly Language
load x
add y
store z
halt

High-Level Programming Language
z = x + y

https://survey.stackoverflow.co/2022/#technology-most-popular-technologies

https://survey.stackoverflow.co/2022/

| Department of Advanced Computing Sciences

Source Code

• Computer files
containing high-level
programming language
statements

• Can be compiled and
executed (or possibly
interpreted directly)

| Department of Advanced Computing Sciences

Editors

Source code files are text files
• contain only ascii/unicode characters
• very different from e.g. a Word file

Programming editors
• edit text files
• supply syntax

highlighting
• more

| Department of Advanced Computing Sciences

Source code to running program

Program compilation
• the process of converting a high-level language program

into machine language; done at once before the program
runs by a program called “compiler”

Program interpretation
• the process of executing a program by another program

called “interpreter”; converts our code line-by-line into
machine code during program run

| Department of Advanced Computing Sciences

The compilation & running process

| Department of Advanced Computing Sciences

Compilation for different computers

| Department of Advanced Computing Sciences

Java

is (according to Sun Microsystems) a simple, object-
oriented, distributed, interpreted, secure,
architecture-neutral, portable, multithreaded,
general-purpose language developed by Sun
Microsystems in 1995

üwell known and popular
üwidely used (also for teaching)
ü rich library
üdesigned for the internet

not designed for teaching

| Department of Advanced Computing Sciences

Compilation & running process for Java

| Department of Advanced Computing Sciences

Summary

• Computer architecture
• Binary representations and machine language
• High level programming languages
• Compilation, interpretation and execution

Book: Chapter 1
Quiz: 1a
Assignment 0: Hello Visual Studio Code!

| Department of Advanced Computing Sciences

Learning objectives

• You know the four components of the Von Neumann
Architecture

• You understand the execution cycle on the Von Neumann
Architecture

• You understand the binary representation
• You know the basics of assembler
• You know the difference between assembly and high-level

programming languages
• You know the difference between compilation vs interpreted

code

| Department of Advanced Computing Sciences

Next up

• Watch the videos about compilation and
prepare for variables and methods

• Live coding lecture tomorrow
• The first tutorial is on Friday. Prepare it in

advance!
- Get Visual Studio Code installed and running

- Read Game Lab 1 Student Handbook

