Procedural Programming

Theory Week 1

% Maastricht University | Department of Advanced Computing Sciences

Learning objectives

* You know the four components of the Von Neumann
Architecture

* You understand the execution cycle on the Von Neumann
Architecture

* You understand the binary representation

* You know the basics of assembler

* You know the difference between assembly and high-level
programming languages

* You know the difference between compilation vs interpreted
code

% Maastricht University | Department of Advanced Computing Sciences

Let’s take it from the start

 What is a computer?

« “A device that computes...
especially a programmable electronic machine
that performs high-speed mathematical or
logical operations or that assembles, stores,

correlates, or otherwise processes information”
— From American Heritage® Dictionary of the English
Language, 4t Edition

% Maastricht University | Department of Advanced Computing Sciences

The first computers

e Scales — computed relative weight of two
items

— Computed if the first item’s weight was less
than, equal to, or greater than the second
item’s weight

e Abacus — performed mathematical X
computations

— Primarily thought of as Chinese, but also
Japanese, Mayan, Russian, and Roman

versions & 3 0 2 7 1 & 4 0 @&
— Can do square roots and cube roots

% Maastricht University | Department of Advanced Computing Sciences

Basic computer architecture

CPU COOLER

SSD SATA

MOTHERBOARD

Loxo

GRAPHICS CARD POWER SUPPLY UNIT

% Maastricht University | Department of Advanced Computing Sciences

Von Neumann Architecture

Memory
Arithmetic
Control [LSQ.',[C
Unit Do ni
Ll Accumulator

T s

i

Input Output

% Maastricht University | Department of Advanced Computing Sciences

Von Neumann Computer

* 4 components
1. Control Unit

2. Arithmetic/Logic Unit
3. Memory
4. Input/Output

* Stored program concept
e Sequential execution of instructions

% Maastricht University | Department of Advanced Computing Sciences

Memory

Functional unit of a computer that stores and can

retrieve instructions and data

e Consists of circuits that represent cells capable
of storing N bits

 Each cell has
— an address
— content

1021 FACIACIBALD

v
N bit architecture

(8,16, 32, 64)

% Maastricht University | Department of Advanced Computing Sciences

Internal memory

* RAM (random access memory)
— reading and writing data and instructions

— volatile
REEW 1 [1/0[1]0[1]1]0
 ROM (read only memory) 1120 ANDADAAA
1101 IAGAERAGC
. 1100 (IECICICIEYENEY
Each cell has unique address 200: INDBOERD
o000 CIICIENENEIEIEY

Fast! 10-15 nsec (1 nano second = 10~ sec)

% Maastricht University | Department of Advanced Computing Sciences

External Memory

Mass storage devices

e (Direct) access
— USB flash drives
— solid state drives
— hard disks
— optical disks

e Sequential access .
— tape drives

Sector

% Maastricht University | Department of Advanced Computing Sciences

What'’s a floppy?

(Wikipedia)

Their size (3.5-Inch) was 1.44MB!

% Maastricht University | Department of Advanced Computing Sciences

Binary Representations

e What?
— everything inside a computer
numbers, text, programs, pictures, music, video, ...

* Why?
— information is stored using voltage levels
— using decimals requires 10 reliable distinct levels
— much cheaper to only use 2 levels (but more
components)

% Maastricht University | Department of Advanced Computing Sciences

Bits, Bytes,

1 byte 8 bits

1 kilobyte (KB) 210 =1024 bytes

1 megabyte (MB) 220 = 1048760 bytes

1 gigabyte (GB) 230 = 1073741824 bytes

1 terabyte (TB) 240 =1099511627776 bytes
1 petabyte (PB) 2°0 bytes

Size of the entire WWW is 1 yottabyte (22° bytes)

It would take approx. 11 trillion years to download a yottabyte file from the internet
using a high-power broadband connection

% Maastricht University | Department of Advanced Computing Sciences

Decimals

Base 10
(based on our number of fingers?)

* Decimal digits: 0,1,2,3,4,5,6,7,8,9
* Positional system — position represents power

Example:
3845,,=3x10% + 8x10? + 4x10* + 5x10°

% Maastricht University | Department of Advanced Computing Sciences

Binary

Base 2

* Binary digits (bits): 0,1
e Similar positional system — different base

Example
1101, = 1x23 + 1x22 + 0x2% + 1x2° =13,

% Maastricht University | Department of Advanced Computing Sciences

Negative numbers?

Leftmost bit of a number represents the sign

ofor+ DAGABARE - - ss.
Lfor- PADARAAR - -sc.

0jojojojojojoo
110/00/0/0/00
P,

{ Maastricht University | Department of Advanced Computing Sciences

Arithmetic overflow

0]1]1/2]1]1]1]1[eglol0lololoolo]1 e

Trouble arises when the result requires more than the
number of available bits...

E’m Maastricht University | Department of Advanced Computing Sciences

Floating point numbers

* But, how can we represent the decimal

numbers?

value 101, = 21
— 1 1 1
= (1 + Z+1—6) * 2

0[1/0/0/0/1/0/1 (1)
S (1+5)

(1+ 5) 21
= —_] k
16

=21%273

Sign Exponent Mantissa

~ 2.625

https://www.geeksforgeeks.org/introduction-of-floating-point-representation/

% Maastricht University | Department of Advanced Computing Sciences

https://www.geeksforgeeks.org/introduction-of-floating-point-representation/

ASCII & UNICODE

* Also text uses a binary representation

* Each character is translated into a bitstring
— ASCIl uses 8 bits

— UNICODE uses 16 bits

ASCII examples: A =01000001 a =01100001
@ =01000000 y=11111111

.....

01010111 01100101 01101100 01100011
01101111 01101101 01100101 00100001

D

" Maastricht University | Department of Advanced Computing Sciences https://www.ascii-code.com/

https://www.ascii-code.com/

Input/Output controllers

Treated as part of memory space
— need to compensate for speed differences

% Maastricht University | Department of Advanced Computing Sciences

Execution cycle

1. Fetch instruction

Memory Control unit Input-output

ALU

Repeat

Processor

2. Decode instruction

3. Execute instruction

% Maastricht University | Department of Advanced Computing Sciences

Modern Computer Architecture

... iIs a bit more complex ...

W MomovyB
Build-o-Orderi urS.Exeress | Northbridge poie Mobile
C ize-to-Ord Docking
Socket PCI Express (variant)

... but the principles remain the same

E’m Maastricht University | Department of Advanced Computing Sciences

Arithmetic/Logic Unit (ALU)

Performs primitive arithmetic and logic operations
— Registers
— ALU circuit

ALU

% Maastricht University | Department of Advanced Computing Sciences

Control Unit (CU)

Implements the sequential execution of instructions
* program counter
» fetches instructions
e decodes instructions
* ensures execution

Processor = ALU + CU i S

—
Instruction decoder circuit . ALU, 1/0 controllers,

and other components

—

% Maastricht University | Department of Advanced Computing Sciences

Machine Language

Language/representation used for instructions

inside the computer
jalollilolslslolslofal. olala]a]

operation code operands/address field(s)

Instructions or opcodes for:
— input and output
— moving data between RAM and registers
— arithmetic and logic operations
— comparisons and conditional outcomes

% Maastricht University | Department of Advanced Computing Sciences

Instruction Set Examples

Binary opcode Instruction
0000 LOAD X

0001 STORE X
0010 CLEAR X
0011 ADD X

0100 INCREMENT X
0101 SUBTRACT X
0110 DECREMENT X
0111 COMPARE X
1000 JUMP X

1001 JUMPGT X
1010 JUMPEQ X
1011 JUMPLT X
1100 JUMPNEQ X
1101 IN X

1110 OUT X

1111 HALT

% Maastricht University | Department of Advanced Computing Sciences

Assembler

Instruction

LOAD X
STORE X
CLEAR X

. ADD X
A human readable representation of INCREMENT X

machine language SUBTRACT X
DECREMENT X

COMPARE X
; i1 JUMP X
Can differ for each specific processor e X
JUMPEQ X
JUMPLT X
JUMPNEQ X
IN X
OuT X
HALT

% Maastricht University | Department of Advanced Computing Sciences

Assembler programming

Programming in assembler is possible ...
but not recommended if sanity is something you enjoy or value

* microscopic view of tasks
* manual management of data movement
* machine-specific

* only used for ultra-high-performance requirements
of small subroutines

% Maastricht University | Department of Advanced Computing Sciences

High-level programming languages

Each language statement can correspond to many
machine instructions

e (more) macroscopic view of a task
* (more) portable between machines
e closer to natural language descriptions

Assembly Language High-Level Programming Language
load x > Z=X+Yy

addy

store z

halt

https://survey.stackoverflow.co/2022/#technology-most-popular-technologies

% Maastricht University | Department of Advanced Computing Sciences

https://survey.stackoverflow.co/2022/

Source Code

private void advance() {
boolean[][] newgrid = new boolean[grid.length][grid[0].length];

for (int 1=0; i<grid.length; i++)
for (int j=0; j<grid[0].length; j++)
newgrid[1][j] = false;

* Computer files

for (int 1=0; i<grid.length; i++)

containing high-level for (int §=0; j<grid[0]length; j++)
. I if ((grid[1][j1) & (nbrOfNeighbors(i,j) < 2))
newgrid[1][j] = false;
progra mmi ng anguage else if ((grid[i][j1) & (2 <= nbrOfNeighbors(i,j)) & (nbrOfNeighbors(i,j) <= 3))
State me nts newgrid[i][j] = true;

else if ((grid[i][j]) & (3 < nbrOfNeighbors(i,j)))
newgrid[1][j] = false;
else if ((!grid[1]1[j]) & (nbrOfNeighbors(i,j) == 3))

* Can be compiled and nengrid[1103] = true;
executed (or possibly i i
interpreted directly)

private int nbrOfNeighbors(int x, int y) {
int result = 9;
if ((0 <= x-1) && (0 <= y-1) & (grid[x-1]1[y-1])) result++;
if ((0 <= x-1) && (grid[x-1][y])) result++;
if ((0 <= x-1) && (y+1 < grid[0].length) && (grid[x-1][y+1])) result++;
if ((0 <= y-1) && (grid[x][y-11)) result++;
if ((y+1 < grid[0].length) && (grid[x][y+1])) result++;
if ((x+1 < grid.length) & (@ <= y-1) & (grid[x+1][y-1])) result++;
if ((x+1 < grid.length) & (grid[x+1][y])) result++;
if ((x+1 < grid.length) & (y+1 < grid[0].length) && (grid[x+1]1[y+1])) result++;
return result;

% Maastricht University | Department of Advanced Computing Sciences

Editors

Source code files are text files
» contain only ascii/unicode characters
* very different from e.g. a Word file

Programming editors
* edit text files

° 8 for (int i = @; i < array.length; i++) {
Supply SyntaX 9 for (int j = @; j < array[i].length; j++) {
h|gh||ght|ng 10 if (array[i][j]1>=0){

11 positive[i][j] = true;

* more 12

“ alsg
14 ¥
15 }

% Maastricht University | Department of Advanced Computing Sciences

Source code to running program

Program compilation
* the process of converting a high-level language program

into machine language; done at once before the program
runs by a program called “compiler”

Program interpretation

* the process of executing a program by another program
called “interpreter”; converts our code line-by-line into
machine code during program run

% Maastricht University | Department of Advanced Computing Sciences

The compilation & running process

High-level
language
program

Source program

Complete
| Complete | | object code |
object code loaded into Fardwete
— memory —

Execution
Library
object code

\4

{ Maastricht University | Department of Advanced Computing Sciences

Compilation for different computers

Executable module

Compiler 1

Source code

Compiler 2

Mac

Compiler 3

Sun Sun

% Maastricht University | Department of Advanced Computing Sciences

Java

is (according to Sun Microsystems) a simple, object-
oriented, distributed, , secure,
architecture-neutral, portable, multithreaded,
general-purpose language developed by Sun
Microsystems in 1995

v"well known and popular
v widely used (also for teaching)
v'rich library

v’ designed for the internet

not designed for teaching

% Maastricht University | Department of Advanced Computing Sciences

Compilation & running process for Java

. . Virtual
Editor Compiler .
Machine
—a Class files
Source File
Bytecode Library files
Source code
] 800 Terminal — bash
— GHEHH Last login: Tue Aug 9 89:14:083 on ttysooo
V PC wopr: ~$ cd Documents/Software/java/
- wopr: java$ javac HelloWorld.java
S wopr: java$ java HelloWorld
M Hello World!
—_— wopr: java$
=

Bytecode Mac
———
Java compiler Java bytecode
interpreters.
Developer's Sun

machine

E’m Maastricht University | Department of Advanced Computing Sciences

Running
Program

Summary

Computer architecture

Binary representations and machine language
High level programming languages
Compilation, interpretation and execution

Book: Chapter 1
Quiz: 1a
Assignment 0: Hello Visual Studio Code!]

|

% Maastricht University | Department of Advanced Computing Sciences

Learning objectives

* You know the four components of the Von Neumann
Architecture

* You understand the execution cycle on the Von Neumann
Architecture

* You understand the binary representation

* You know the basics of assembler

* You know the difference between assembly and high-level
programming languages

* You know the difference between compilation vs interpreted
code

% Maastricht University | Department of Advanced Computing Sciences

Next up

e Watch the videos about compilation and
prepare for variables and methods

* Live coding lecture tomorrow

* The first tutorial is on Friday. Prepare it in

advance!

— Get Visual Studio Code installed and running
— Read Game Lab 1 Student Handbook

% Maastricht University | Department of Advanced Computing Sciences

