
@@export_scripts@@

Theory of
Computation
BCS1110
Dr. Ashish Sai

!

 TOC - Lecture 1

"

#

EPD150
bcs1110.ashish.nl

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/bcs1110.ashish.nl

@@export_scripts@@

@@export_scripts@@

Quick Recap
Week Lecture 1 Lecture 2

Week 1 Introduction (Computational

Thinking)

Hardware (Transistors, Gates (AND, OR, NOT),

Combinational Circuits, ALU, CPU, Computing

Hardware)

Week 2 Algorithms (Flowcharts,

Pseudocode) - Dr. Tom

Bitterman

Command Line and Git - Dr. Tom Bitterman

This Week Theory of Computation Theory of Computation

Week 4 Computer Networks Computer Networks

Week 5 Information Security Information Security

@@export_scripts@@

Plan for Today
Formal Language Theory–
Finite Automata–
FSA Examples–
Deterministic Finiate Automaton–

@@export_scripts@@

Why Do We Need to Know This?

!

"Computer science at its core is all about problem
solving!"

"

Computer science is more than just:–
Writing code

#

1.
Compiling code

$

2.
Fixing bugs in code

%

3.
Compiling again

$

4.
And finally going for a walk

&

 because you've ended up
with even more bugs than you began with

'

5.

@@export_scripts@@

What problems can we solve
with a computer?

@@export_scripts@@

Theory of Computation (TOC)

TOC answers a fundamental question:

"What problems can we solve with a
computer?"

–

Importance of TOC:–

Knowing what a computer can and cannot do helps us

solve problems more efficiently.

–

Some problems cannot be solved by a computer,

regardless of the algorithm.

–

@@export_scripts@@

Halting Problem
A decision problem: will the given program terminate or run
forever?
import java.util.Scanner;
public class HaltingProblem {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 while (!scanner.nextLine().isEmpty()) {
 // Loops if input isn't empty
 }
 }
}

Can you write an automated program that could answer this
question without running the code?

@@export_scripts@@

Computers are Messy

@@export_scripts@@

Computers are Messy

That messiness makes it hard to rigorously
say what we intuitively know to be true:
that, on some fundamental level, different
brands of computers or programming languages
are more or less equivalent in what they are
capable of doing.

 vs ⊞ & C vs C++ vs Java vs Python

@@export_scripts@@

We need a simpler
way of discussing
computing
machines

@@export_scripts@@

An automaton (plural:
automata) is a mathematical
model of a computing device

@@export_scripts@@

Automata are Clean

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

@@export_scripts@@

@@export_scripts@@

Automata are Clean

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

@@export_scripts@@

Why build models?
Mathematical simplicity–
It is significantly easier to manipulate our
abstract models of computers than it is to
manipulate actual computers

–

Intellectual robustness–
If we pick our models correctly, we can make
broad, sweeping claims about huge classes of
real computers by arguing that they're just
special cases of our more general models

–

@@export_scripts@@

Why build models?
The models of computation we will explore in this
class correspond to different conceptions of what a
computer could do

–

Finite Automata (today’s lecture) are an abstraction
of computers with finite resource constraints

–

Provide upper bounds for the computing machines
that we can actually build

–

Deterministic Finite State Automata (DFA)–
Non-deterministic Finite State Automata (NFA)–

@@export_scripts@@

What problems
can we solve
with a
computer?

@@export_scripts@@

Problems with Problems
Before we can talk about what problems we can
solve, we need a formal definition of a
“problem.”

–

We want a definition that–
corresponds to the problems we want to solve,–
captures a large class of problems, and–
is mathematically simple to reason about–

No one definition has all three properties–

@@export_scripts@@

Formal Language
Theory
Part 1/4

@@export_scripts@@

Strings (informal)

Sequence of any symbols
(“characters”)

Example:

“hello” “1234” “

!!!!

” “ ”

–

@@export_scripts@@

Strings (more formally)
An alphabet is a finite set of symbols called characters–
Typically, we use the symbol Σ (sigma) to refer to an
alphabet

–

A string over an alphabet Σ is a finite sequence of
characters drawn from Σ

–

Example: If Σ = {a, b}, here are some valid strings over
Σ: a, aabaaabbabaaabaaaabb

–

The empty string has no characters and is denoted by ε–

@@export_scripts@@

Languages (informal)
Sets of strings–
Examples–
{hello, 1234,

!!!!

, ε}–
{10110, 0110, 10}–

@@export_scripts@@

Languages (more formally)
A formal language is a set of strings.–
We say that L is a language over Σ if it is a set of
strings over Σ

–

Example: The language of palindromes over Σ = {a,b,c}
is the set

–

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... }–
The set of all strings composed from letters in Σ is
denoted Σ*

–

Formally, we say that L is a language over Σ if L ⊆
Σ*

–

@@export_scripts@@

Quick Quiz
Which statements are true?–
Alphabets are sequences of characters–
Languages are sets of strings–
Strings are sets of characters–
Characters are individual symbols–
Languages are sequences of characters–

@@export_scripts@@

Recap
Languages are sets of strings–
Strings are sequences of characters–
Characters are individual symbols–

Alphabets are sets of characters

Languages

Strings Characters

Alphabets

are sets of

are finite sequences of

are nonempty, finite sets of

–

@@export_scripts@@

The Model
Fundamental Question: For what languages L can you
design an automaton that takes as input a string,
then determines whether the string is in L?
(Essentially pattern recognition)

–

The answer depends on the choice of L, the choice of
automaton, and the definition of “determines.”

–

In answering this question, we’ll go through models
of computation and see how this seemingly abstract
question has very real and powerful consequences.

–

@@export_scripts@@

To Summarise
An automaton is an idealized mathematical
computing machine (I use the terms machine
and automata interchangeably)

–

A language is a set of strings, a string
is a (finite) sequence of characters, and
a character is an element of an alphabet

–

@@export_scripts@@

What problems can we solve
with a computer?

@@export_scripts@@

Finite Automata
Part 2/4

@@export_scripts@@

A finite automaton is a simple type of
mathematical machine for determining
whether a string is contained within some
language

@@export_scripts@@

Each finite automaton
consists of a set of states
connected by transitions

@@export_scripts@@

@@export_scripts@@

OFF ON
Start
State

@@export_scripts@@

Automata to determine if a heatwave occurred

Input: String of weather data–

!

 Heatwave: temperature ≥ 28 C for 2 consecutive
days

–

@@export_scripts@@

Automata to determine if a heatwave occurred

Input: String of weather data–

!

 Heatwave: temperature ≥ 28 C for 2 consecutive
days

–

q0 q1
Start
State q2

≥ 28 C ≥ 28 C

< 28 C

≥ 28 C, < 28 C

< 28 C

@@export_scripts@@

Automata to determine if a heatwave occurred

Input: String of weather data–

!

 Heatwave: temperature ≥ 28 C for 2 consecutive
days

–

q0 q1
Start
State q2

1 1

0

1, 0

≥ 28 C is 1
< 28 C is 0

0

@@export_scripts@@

q0 q1
Start
State q2

1 1

0

1, 0

≥ 28 C is 1
< 28 C is 0

0

 = { all strings containing 11}– Lm

The automaton above recognises – Lm

Accepts everything within and
rejects everything else

– Lm

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

Each circle
represents a
state of the
automaton

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

One special state

is designated as

the start state

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

The automaton is
run on an input
string and
answers “yes” or
“no”
0 1 0 1 1 0

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

The automaton now
begins processing
characters in the
order in which
they appear
0 1 0 1 1 0

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

Each arrow in this
diagram represents a
transition. The
automation always
follows the
transition
corresponding to the
current symbol being
read
0 1 0 1 1 0

@@export_scripts@@

A Simple Finite Automaton

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

After
transitioning,
the automaton
considers the
next considers
the next symbol
in the input
0 1 0 1 1 0

@@export_scripts@@

A Simple Finite Automaton

0 1 0 1 1 0

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

Now that the
automaton has looked
at all this input, it
can decide whether to
say “Yes” or “No”
The double circle
indicates that this
state is an accepting
state, so the
automation outputs
“Yes”

@@export_scripts@@

A Simple Finite Automaton

Input: 1 0 1 0 0 0

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

@@export_scripts@@

A Simple Finite Automaton

Input: 101000

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

This state is not
an accepting state
(it is a rejecting
state), so the
automaton says
“No”.

@@export_scripts@@

A Simple Finite Automaton

Input: 11011100

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

Try it yourself!
Does this
automaton accept
or reject?

@@export_scripts@@

A Simple Finite Automaton

Input: 11011100

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

@@export_scripts@@

To Summarise
A finite automaton is a collection of states joined
by transitions

–

Some state is designated as the start state–

Some states are designated as accepting states–

The automaton processes a string by beginning in the

start state and following the indicated transitions

–

If the automaton ends in an accepting state, it

accepts the input
–

Otherwise, the automaton rejects the input`–

@@export_scripts@@

Short break
Do not leave your seats (5 min)

@@export_scripts@@

FSA Examples
Part 3/4

@@export_scripts@@

Just Passing
Through

q0

q1

Start

01

q2

q3 q4

1

1
1

1

0

0

0

0

Input
1 1 0 1

@@export_scripts@@

Just Passing
Through

q0

q1

Start

01

q2

q3 q4

1

1
1

1

0

0

0

0

Input
1 1 0 1

@@export_scripts@@

--

A finite automaton does not
accept as soon as it enters an

accepting state
--

A finite automaton accepts if
it ends in an accepting state

@@export_scripts@@

What Does This
Accept?

q0

q1

Start

01

q2

q3 q4

1

1
1

1

0

0

0

0

No matter where
we start in the
automaton, after
seeing two 1’s,
we end up in
accepting state q3

@@export_scripts@@

What Does This
Accept?

q0

q1

Start

01

q2

q3 q4

1

1
1

1

0

0

0

0

No matter where
we start in the
automaton, after
seeing two 0’s,
we end up in
accepting state q4

@@export_scripts@@

What Does This
Accept?

q0

q1

Start

01

q2

q3 q4

1

1
1

1

0

0

0

0

This automaton
accepts a string
in {0, 1} if and
only if the
string ends in 00
or 11

∗

@@export_scripts@@

The language of an automaton is the
set of strings that it accepts

If D is an automaton that
processes characters from the
alphabet Σ, then L(D) is formally
defined as:

–

L(D) = {w ∈ Σ | D accepts w}– ∗

@@export_scripts@@

Quick Quiz
How many of the following statements are true?–

A language of an automaton can have an
infinitely long string (or many of them) in it

–

A language of an automaton can contain
infinitely many strings

–

A language of an automaton can contain no
string

–

@@export_scripts@@

A Small Problem

q0

q2

Start

00

q1
1

Input:
0 1 1 0

@@export_scripts@@

A Small Problem

q0

q2

Start

00

q1
1

Input:
0 1 1 0

@@export_scripts@@

A Small Problem

q0 q1
Start 0, 1

0

q2

0, 1

0, 1

Input:
0 0 0

@@export_scripts@@

A Small Problem

q0 q1
Start 0, 1

0

q2

0, 1

0, 1

Input:
0 0 0

@@export_scripts@@

The Need for Formalism
In order to reason about the limits of what
finite automata can and cannot do, we need to
formally specify their behaviour in all cases

–

All of the following need to be defined or
disallowed:

–

What happens if there is no transition out of a
state on some input?

–

What happens if there are multiple transitions
out of a state on some input?

–

@@export_scripts@@

Deterministic Finite
Automaton

Part 4/4

@@export_scripts@@

DFAs
A DFA is defined relative to some alphabet Σ–
For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ

–

This is the “deterministic” part of DFA–
There is a unique start state–
There are zero or more accepting states–

@@export_scripts@@

Deterministic Finite Automaton (Formal Definition)

D = (Q, Σ, δ, , F)

q0 q1
Start
State q2

1 1

0

1, 0

≥ 28 C is 1
< 28 C is 0

0

q0

Q is the set of states [Q = { , , }]– q0 q1 q2

Σ is the alphabet [Σ = {1,0}]–
δ is the transition function [I will cover this tomorrow]–
 is the start state– q0

F is an accepting state [F = { }]– q2

@@export_scripts@@

How many of these are DFAs over {0, 1}?

q0 q1

q3 q2

Start
0

0

0

0

111 1 1

q0

q1

Start

01

q2

q3 q4

1

1
1

1

0

0

0

0

q0 q1
Start 0, 1

0

q2

0, 1

0, 1

q0

q2

Start

01

q1
1

@@export_scripts@@

Is this a DFA?
Drinking Family of Alpaca

@@export_scripts@@

Designing DFAs
At each point in its execution, the DFA can only

remember what state it is in

–

DFA Design Tip: Build each state to correspond to
some piece of information you need to remember

–

Each state acts as a “memento” of what you're

supposed to do next

–

Only finitely many different states means only

finitely many different things the machine can

remember

–

@@export_scripts@@

Recognizing Languages with DFAs
L = { w ∈ {a,b} | w contains aa as
a substring }

∗

@@export_scripts@@

Recognizing Languages with DFAs
L = { w ∈ {a,b} | w contains aa as
a substring }

∗

q0 q1
Start a

q2
a

b Σ

b

@@export_scripts@@

More Elaborate DFAs
L = { w ∈ {a, ,/} | w

represents a Java-style

comment }

Let’s have the a symbol be a
placeholder for “some

character that isn’t a star

or slash.”

Try designing a DFA for

comments! Here’s some test

cases to help you check your

work:

∗ ∗

Accepted:
 /*a*/
 /**/
 /***/
/*aaa*aaa*/
 /*a/a*/

Rejected:
 /**
/**/a/*aa*/
 aaa/**/aa
 /*/
 /**a/
 //aaaa

@@export_scripts@@

More Elaborate DFAs
L = { w ∈ {a, ,/} | w represents
a Java-style comment }

∗ ∗

@@export_scripts@@

More Elaborate DFAs
L = { w ∈ {a, ,/}* | w represents
a Java-style comment }

∗

q0 q1
Start /

q4
*

a, * Σ

q2 q3

q5

/, a

*

/, a

a

*

/

Σ

@@export_scripts@@

See you
tomorrow!

!

