Theory of
Computation

BCS1110
Dr. Ashish Sai

- EPD150

file:///Users/ashishsai/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/bcs1110.ashish.nl

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL | _ | | _

TIME p(n), WE CAN DEVISE AN ALGORITHM | ; s) " .
THAT TAKES AN INPUT w OF LENGTH n AND Prof: Every DFAIs an 1UFA, but every \\FLiIsnota DFA
PRODUCES Eu.. THE RUNNING TIME IS O

ON A MULTITAPE DETERMINISTIC TURING but for every I'F/\ there exists an equivalent
MACHINE AND,..

DFA.

Students:

]

‘ ‘\\‘ ‘

WTF, MAN., I JUST
WANTED TO LEARN
HOW TO PROGRAM
VIDEO GAMES,

Quick Recap

Week Lecture 1 Lecture 2
Week 1 Introduction (Computational Hardware (Transistors, Gates (AND, OR, NOT),
Thinking) Combinational Circuits, ALU, CPU, Computing
Hardware)
Week 2 Algorithms (Flowcharts, Command Line and Git - Dr. Tom Bitterman

Pseudocode) — Dr. Tom

Bitterman
This Week Theory of Computation Theory of Computation
Week 4 Computer Networks Computer Networks

Week 5 Information Security Information Security

Plan for Today

— Formal Language Theory
— Finite Automata

— FSA Examples
— Deterministic Finiate Automaton

Why Do We Need to Know This? @

— Computer science 1s more than just:
Writing code ..

Compiling code &

Fixing bugs 1n code *

Compiling again <

And finally going for a walk * because you've ended up
with even more bugs than you began with @

or A WO DN P

"Computer science at 1ts core 1s all about problem

solving!" ¢

Theory of Computation (TOC)

— TOC answers a fundamental question:

"What problems can we solve with a
computer?™"

— Importance of TOC:

— Knowing what a computer can and cannot do helps us
solve problems more efficiently.

— Some problems cannot be solved by a computer,
regardless of the algorithm.

Halting Problem

A decision problem: will the given program terminate or run
forever?

import java.util.Scanner;
public class HaltingProblem {

public static void main(Stringl[] args) {
Scanner scanner = new Scanner (System.in) ;
while (!scanner.nextlLine() .i1sEmpty()) {

}

Can you write an automated program that could answer this
question without running the code?

Computers are Messy

LT ™
-
‘e g
- s . Pe Nn
‘Q‘ N Sl 5w,
u N **“.“Q"'
- " ~ »
gl S e T
- ° * 5 R 4
‘e . a N, tey
e 4 bt .
. .
: T, e
; of ‘NG "
: e -
'0
: . 2
..a. .
- ’
i .
P ha,

oosllvulngs)
LI O N T TR N N B
TR T T T T T

T T R T ES

DEOEEEr

Computers are Messy

That messiness makes 1t hard to rigorously
say what we intuitively know to be true:
that, on some fundamental level, different
brands of computers or programmiling languages

are more or less equivalent 1n what they are
capable of doing.

& vs B & C vs C++ vs Java vs Python

We need a simpler
way of discussing
computing
NE N ES

An automaton (plural:
automata) is a mathematical
model of a computing device

Automata are Clean

0

0

1 1 1 1

‘ |
Q)

0

J6 CONBA . -
1 2
3 4 OrNMT WO
5 = NOLTOVONNDD ™ v v v v v v
— +5V +5V
+5V
8 = BC N
R6 R63 o
10 10k
+5V
! U8 ATmega32 1
PR g S— +
M5 o4 11pB0 PAO 0 1 -
i S'PB1 PAl =g o 1,
D 4 |82 FPAliThy ¢ b4 D3R
Tsw2° ; = PB3 PA3 1 o
+5V 21 PB4 PA4 32 1 S 1ps D1 +5V
= 4.7n g | PB6 FAG I3, 21D8 NCfp —==
' PB7 PA7 =— D9 NC | =
pingas £ T | H4+—+——3 RST AREF [32—}<20 1 i L DGND RS 3 oo
T 11 Y& GND S5y ' 18 1AGND CsS
T 12| GND AVCC 55— | 30| VOUTSHDN £ I
15| XALT2 PC7 |52 VREF VDD 014
e 121 506 pee [2L = AD7393 AN =
c18 —-{ PD0 PC5 5z
i [— L 0 1u —6 | PD1 PC4 ¢
14.7456 = 17 | PD2 PC3 24 Vref
| i - — g |ERe Ediey Vout
— C16 (55 F @i — 9 E[D)g 58(1) —55
2p, 22p 20 | pps pp7 41 e

Automata are Clean

0

0

1 1 1 1

‘ |
Q)

0

Why build models?

— Mathematical simplicity

— It 1s significantly easlier to manilipulate our
abstract models of computers than 1t 1s to
manlipulate actual computers

— Intellectual robustness

— If we pick our models correctly, we can make
broad, sweepling claims about huge classes of
real computers by arguing that they're just
speclal cases of our more general models

Why build models?

— The models of computation we will explore 1in this
class correspond to different conceptions of what a
computer could do

— Finite Automata (today’s lecture) are an abstraction
of computers with finite resource constraints

— Provide upper bounds for the computing machines
that we can actually build

— Deterministic Finite State Automata (DFA)
— Non—-deterministic Finite State Automata (NFA)

What problems
canwe solve
with a
computer?

Problems with Problems

— Before we can talk about what problems we can
solve, we need a formal definition of a
‘nroblem.”

— We want a definition that
— corresponds to the problems we want to solve,
— captures a large class of problems, and
— 1s mathematically simple to reason about

— No one definition has all three properties

Formal Language
Theory

Part 1/4

Strings (informal)

— Sequence of any symbols
("characters”)

Example:

uhellOn 11123411 MF@ J?@y E@y F@n I n

Strings (more formally)

— An alphabet 1s a finite set of symbols called characters

— Typically, we use the symbol X (sigma) to refer to an
alphabet

— A string over an alphabet X 1s a finite sequence of
characters drawn from X

— Example: If ¥ = {a@, b}, here are some valid strings over

>: a, aabaaabbabaaabaaaabb
— The empty string has no characters and 1s denoted by €

Languages (informal)

— Sets of strings
— Examples
— {hello, 1234, wwww ¢}
— 110110, 0110, 10}

Languages (more formally)

— A formal language 1s a set of strings.

— We say that L 1s a language over ¥ 1f 1t 1s a set of
strings over X

— Example: The language of palindromes over X = {a,b,c}
1s the set
— {e, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... }

— The set of all strings composed from letters i1n X 1s
denoted Xx

— Formally, we say that L 1s a language over ¥ 1f L ¢
2 %k

Quick Quiz

— Which statements are true?

— Alphabets are sequences of characters
— Languages are sets of strings

— Strings are sets of characters

— Characters are individual symbols

— Languages are sequences of characters

Recap

— Languages are sets of strings

— Strings are sequences of characters

— Characters are i1ndividual symbols

— Alphabets are sets of characters

[Languages J

are sets of

{ Alphabets }

are nonempty, finite sets of

[Strings

A 4

)

) are finite sequences of
Characters

The Model

— Fundamental Question: For what languages L can you
design an automaton that takes as 1nput a string,
then determines whether the string 1s 1n L?
(Essentially pattern recognition)

— The answer depends on the choice of L, the choice of
automaton, and the definition of “determines.”

— In answering this question, we’ll go through models
of computation and see how this seemingly abstract
guestion has very real and powerful consequences.

To Summarise

— An automaton 1s an 1dealized mathematical
computing machine (I use the terms machine
and automata interchangeably)

— A language is a set of strings, a string
1s a (finite) sequence of characters, and
a character 1s an element of an alphabet

What problems can we solve
with a computer?

Finite Automata

Part 2/4

A finite automaton is a simple type of
mathematical machine for determining

whether a string is contained within some
language

Each finite automaton
consists of a set of states
connected by transitions

@
SLANT [oBn

o/

;
-

Automata to determine if a heatwave occurred

— Input: String of weather data

= =

— X Heatwave: temperature = 28 C for 2 consecutive
days

Automata to determine if a heatwave occurred

— Input: String of weather data

= =

— X Heatwave: temperature = 28 C for 2 consecutive
days

<28C =28 C =28 C

Start ‘

OENONO

<28 C

=28C,<28C

Automata to determine if a heatwave occurred

— Input: String of weather data

= =

— X Heatwave: temperature = 28 C for 2 consecutive
days

>28Cis 1
<28Cis0

=28Cis 1
<28Cis0

— L,, = { all strings containing 11}
— The automaton above recognises L,

— Accepts everything within L,, and
rejects everything else

A Simple Finite Automaton

.

Start

0

.

.
)

.

A Simple Finite Automaton

Start 4, Each circle

represents a
1 1 state of the

1
0 O automaton

.

A Simple Finite Automaton

Start o 6
One special state

1s designated as
the start state

1 1 1

@
O

A Simple Finite Automaton

0 The automaton 1s
Start, g4 run on an input
string and

1 1 answers ”"“yes” or
”I’)O”

1
O 01011680

.

A Simple Finite Automaton

0 The automaton now

start (€ begins processing

characters 1n the

: : order i1n which
they appear

1
: 0610110

.

A Simple Finite Automaton

Each arrow in this
diagram represents a

Start transition. The
o automation always

follows the

. - transition
corresponding to the

1
> > current symbol being
(=

0 010110

.

A Simple Finite Automaton

After
0 transitioning,

Start,(" the automaton

considers the

1 1 next considers
the next symbol

:
O ° °
in the input
O 101160

0 —

.

A Simple Finite Automaton

Start @

1 1
O

0

|l 10110

Now that the
automaton has looked

at all this input, 1t
can decide whether to
say “Yes" or "“No”"

The double circle
indicates that this
state 1s an accepting
state, so the
automation outputs
MYeS I

A Simple Finite Automaton

0

Start
0
1

1 1

°

0

Input: 1 61 6 6 6

.

A Simple Finite Automaton

‘ Input: 101000

This state 1s not

an accepting state
(1t 1s a rejecting
state), so the

automaton says
IINOII

A Simple Finite Automaton

Start @ G
5 Try 1t yourself!

Does this
automaton accept

< or reject?

| Input: 11011100

A Simple Finite Automaton

To Summarise

— A finite automaton i1is a collection of states joined
by transitions

— Some state 1s designated as the start state
— Some states are designated as accepting states

— The automaton processes a string by beginning 1n the
start state and following the 1ndicated transitions

— If the automaton ends 1n an accepting state, 1t
accepts the 1input

— Otherwise, the automaton rejects the input’

Short break

Do not leave your seats (5 min)

FSA Examples

Part 3/4

Just Passing
Through

Start ”

L 0

0

oF r \filz

é

0 1

Just Passing -

Through Input
1161
Start
yOF =
0
q r \Q2

A finite automaton does not
accept as soon as it enters an
accepting state

A finite automaton accepts if
it ends in an accepting state

What Does This

Accept?
No matter where
Star @ we start in the
1 0 automaton, after
0 seeing two 1'’s,
AR N we end up 1n

accepting state g3

0

P

What Does This

Accept?
No matter where
Star @ we start in the
1 0 automaton, after
0 seeing two 0’s,
AR N we end up 1n

accepting state qq

0

&'

What Does This

Accept?
This automaton
Start @ accepts a string
1 0 in {6, 1} * if and
- only 1f the
1 d2 - .
T string ends in 00

or 11

0

&6,

The language of an automaton 1s the
set of strings that 1t accepts

— If D 1s an automaton that
processes characters from the
alphabet ¥, then L(D) is formally
defined as:

—L(D) = {w € ¥ * | D accepts w}

Quick Quiz

— How many of the following statements are true?

— A language
infinitely

— A language
infinitely

— A language
string

of an automaton can have an
long string (or many of them) in it

of an automaton can contailn
many strings

of an automaton can contailin no

A Small Problem

Input:
6116

A Small Problem o

A Small Problem

Input:
@ 6 0

A Small Problem o

0, 1 @ 6 6

Start o 0, 1
0
O, 1

The Need for Formalism

— In order to reason about the limits of what
finite automata can and cannot do, we need to
formally specify their behaviour 1n all cases

— All of the following need to be defined or
disallowed:

— What happens 1f there 1s no transition out of a
state on some 1nput?

— What happens 1f there are multiple transitions
out of a state on some 1nput?

Deterministic Finite
Automaton

Part 4/4

DFAs

— A DFA 1s defined relative to some alphabet X

— For each state 1in the DFA, there must be
exactly one transition defined for each
symbol 1n X

— This 1s the "deterministic” part of DFA
— There 1s a unique start state
— There are zero or more accepting states

Deterministic Finite Automaton (Formal Definition)

1

1
1,0
Start
- @ a @

=>28Cis 1
<28Cis0

D = (QI ZI 6! 901 F)

—Q 1s the set of states [Q =9 g, 1 , g2 }]

— Y is the alphabet [X = {1,0}]
— 6 1s the transition function [I will cover this tomorrow]

—qo 1s the start state

— F is an accepting state [F = { g9 } 1

How many of these are DFAs over {0, 1}?

Designing DFAs

— At each poilnt 1n 1ts execution, the DFA can only
remember what state it 1s 1n

— DFA Design Tip: Build each state to correspond to

SOMmMeE

— Eac
sup

piece of 1nformation you need to remember

n state acts as a "memento” of what you're
nosed to do next

— Only finitely many different states means only
finitely many different things the machine can
remember

Recognizing Languages with DFAs

L = {w€ {a,b} * | wcontains aa as
a substring }

Recognizing Languages with DFAs

L = {w€ {a,b} * | wcontains aa as
a substring }

|

/*a*/

/**/

/***/
/*aaa*aaa*/

/*a/a*/

/**

/%% /a/*aa*/
aaa/**/aa
/*/
/**a/

//aaaa

More Elaborate DFAs

L = { we€{a,*,/} * | w represents
a Java-style comment }

More Elaborate DFAS

L ={ w € {a,*,/}tx | w represents
a Java—-style comment }

See you
tomorrow!

