
KEN-BCS	1120:	Procedural	Programming	(2023-2024)	

1.	Course	description	

The	course	(4	ECTS)	provides	the	basics	of	computer	science	and	computer	programming.	After	a	
short	introduction	to	computer	organization,	the	principles	of	programming	are	presented.	The	
main	 topics	 of	 the	 course	 are:	 data	 types,	 variables,	methods,	 parameters,	 decision	 structures,	
iteration,	arrays	and	recursion.	Programming	skills	will	be	acquired	during	practical	sessions	using	
the	programming	language	Java.	
This	course	is	followed	by	several	courses	such	as,	but	not	limited	to,	Objects	in	Programming,	Data	
Structures	and	Algorithms,	Software	Engineering	or	Projects	1-1	and	1-2,	thus	is	heavily	important	
for	your	curriculum.	Make	sure	you	learn	how	to	program	like	a	master!	Programming	will	follow	
you	throughout	your	DACS	studies	(and	the	rest	of	your	life,	even	if	it’s	not	Java).	
	
2.	Teacher	information		
	
Lecturers	and	tutors	

Enrique	Hortal	(he/him)	 	 enrique.hortal@maastrichtuniversity.nl	 C4.020	
Daniel	Cámpora	(he/him)	 	 d.camporaperez@maastrichtuniversity.nl	 C4.032	

	
Tutor	

Tom	Bitterman	(he/him)		 	 tom.bitterman@maastrichtuniversity.nl		 	
	
Teaching	Assistants	

Spriha	Joshi	(TAs	coordinator)	
	
Abhimanyu	Anand		
Adrien	Bersia	
Ignacio	Cadarso	Quevedo		
Buse	Dağıdır		
Annada	de	Freitas	Sousa	
Anna-Lena	Krause	
Vasilis	Papadakis		
Gabrijel	Radovčić	
Fivos	Tzavellos		
More?	
	

	
How	to	find	us?	
We	will	use	Canvas	for	important	announcements	and	Discord	for	communicating	things	about	the	
course.	 Make	 sure	 that	 you	 follow	 the	 questions	 asked	 there	 and	 participate	 in	 the	 relevant	
discussions.	
	
Other	than	that,	we	are	mostly	available	online,	via	our	email	addresses	(see	above).	We	aim	to	
always	respond	to	your	emails	quickly,	typically	after	10-30	minutes	to	2-3	working	days.	If	you	
ever	wait	longer	than	that	without	hearing	from	us,	please	mail	us	a	reminder.	You	will	probably	
receive	a	more	helpful	answer	from	us	if	your	email	contains	at	least	one	clearly-phrased	question	
or	request.	A	reference	to	the	course	in	the	subject	of	the	email	(e.g.	CS1	–	Doubt	about	Module	3)	
would	be	helpful	as	well.	
	
If	you	want	to	discuss	something	in	person,	you	can	ask	us	after	class.	You	can	also	-usually-	find	
us	in	our	DACS	offices	(PHS1	building)	but	due	to	our	busy	schedules,	it’s	always	good	to	check	via	
email	(or	ask	for	an	appointment).		
	
	
	 	

3.	Textbook	&	Resources	
	
Textbook(s):			 	 Java:	A	Beginner's	Guide,	Eighth	Edition	by	H.	Schildt	(2018).		

McGraw-Hill	Education.	
	 Old	book	(for	those	who	are	retaking	the	course	and/or	already	have	it)	

Big	java:	late	objects	by	C.	S.	Horstmann	(2013).	John	Wiley	&	Sons.	
Slides	&	exercises:		 Available	online	via	Canvas	
Software:		 	 Visual	Studio	Code	(Check	Assignment	0	for	instructions)	
	
4.	Course	format	and	composition	
	
In	this	course,	we	are	going	to	be	using	a	format	which	includes	live	coding	lectures,	individual	
study	at	home	(including	additional	video	material,	book	chapters,	quizzes,	homework,	etc.),	on-
site	 (practical)	 tutorials	 and	 dedicated	 sessions	 (e.g	 recap	 and	 exam	preparation	 lectures).	 All	
sessions	are	split	into	several	groups	(2	groups	for	lectures	and	live	coding	sessions	and	up	to	32	
for	tutorials)	except	for	one	session	in	Week	7	which	will	be	plenary	(more	information	will	be	
delivered	during	the	course).	Below	we	explain	the	different	components.	
	
Live	Coding	Lectures:	During	 live	 coding	 lectures	 you	will	 be	 instructed	 in	 the	basics	 of	 new	
concepts	via	simple	illustrative	examples.	You	are	expected	to	engage	with	the	lecturer	and	your	
fellow	classmates	by	asking	questions	and	by	participating	in	the	relevant	in-class	quizzes	(held	
via	Wooclap).		
	
Individual	 study	 (Video	material,	 Quizzes,	 Homework):	 Each	 week,	 we	 will	 provide	 some	
additional	material	(as	videos	or	other	formats)	which	we	expect	you	to	cover	individually	at	home.	
Our	expectation	is	that	you	cover	this	material	before	the	relevant	live	coding	lecture,	so	that	you	
are	prepared	and	able	to	see	how	the	concepts	you	studied	are	applied	in	practice.	
Each	 live	 coding	 lecture	 is	 followed	 by	 one	 (or	 more)	 small	 quiz(zes),	 where	 you	 test	 your	
knowledge,	 plus	 some	 homework	 exercises	 to	 practice.	 Ideally,	 you	 should	 have	 finished	
homework	before	coming	to	the	next	tutorial,	but	due	to	the	tight	schedule	try	at	least	to	have	it	
prepared.	Homework	is	not	mandatory	and	is	not	to	be	delivered	(or	graded)	but	will	help	you	
build	the	foundation	needed	to	attempt	the	practical	sessions.	Regarding	homework,	you	can	freely	
ask	for	help	from	the	lectures,	TAs	and	classmates	in	the	dedicated	Discord	channel	(more	later)	
or	during	dedicated	(Ask	a	TA)	sessions.	
Additionally,	 this	year,	 a	 set	of	optional	 assignments	will	be	provided.	We	will	make	available	
5(+1)	assignments	covering	the	different	modules	of	the	course.	These	assignments	are	intended	
as	personal	work	but	feel	free	to	collaborate	with	other	peers	if	you	consider	it	helpful.	
To	 hand	 in	 assignments	 for	 programming	 courses	 at	 DACS	 we	 use	 an	 online	 system	 named	
CodeGrade.	 This	 system	 automatically	 compiles,	 tests	 and	 “grade”	 your	 code	 after	 you	 upload	
it.	Every	module	includes	a	problem/assignment,	solving	these	problems	correctly	(as	determined	
by	 CodeGrade)	 may	 be	 a	 good	 indicator	 of	 your	 proficiency	 on	 the	 topic	 with	 respect	 to	 the	
expected	Learning	Goals	until	 this	point.	Because	of	 the	way	the	auto-grading	works,	you	must	
carefully	 follow	 the	 submission	 instructions	 for	 every	 assignment,	 and	 always	 check	 that	 the	
written	 output,	 method	 names,	 file	 names,	 parameters,	 etc.	 match	what	 was	 described	 in	 the	
assignment.	

Before	uploading	code	to	CodeGrade,	make	sure	the	program	works	on	your	machine.	So	run	it	
and	test	it	thoroughly.	You	may	upload	your	submission	as	often	as	you	like,	however,	CodeGrade	
has	a	limit	of	2	submissions	every	10	minutes.	If	your	submission	fails	the	autotest,	study	the	
error	message	and	try	to	find	a	solution	by	altering	and	testing	your	code,	before	re-submitting.	

Although	these	assignments	are	not	graded,	their	completion	is	highly	recommended.	To	
maximize	the	learning	experience:	

• Do	not	copy	source	code	from	a	fellow	student	or	alumni	
• Do	not	copy	source	code	from	the	internet	

Please	 note	 that	 the	 grade	 extracted	 from	 the	 CodeGrade	 autotests	 are	 just	 indicative	 but	 not	

necessarily	demonstrate	the	perfect	functioning	of	the	code	delivered.	Students	are	responsible	
for	 their	 code	 and	 ensuring	 that	 it	 meets	 all	 the	 requirements	 specified	 in	 the	 assignment	
description.	
	
Tutorials:	 These	 sessions	 are	 intended	 as	 hands-on	 sessions	 where	 you,	 together	 with	 other	
colleagues	and	guided	by	a	TA	will	work	on	a	programming	 task.	The	 tasks	proposed	 in	 the	5	
tutorials	are	part	of	the	development	of	a	basic	old-style	fun	adventure	game,	“Jerry’s	Adventure”.	
The	(50-minute	long)	sessions	will	be	structured	as	follows:	

• 5’	of	silent	reading	of	the	assignment	
• 5’-10’	to	“brainstorm”	with	the	TA	and	start	drafting	a	piece	of	pseudocode	to	solve	the	

proposed	assignment	
• 30’	to	start	translating	the	pseudocode	into	actual	code,	supported	by	the	TA	
• 5’	to	wrap	up	and	establish	future	lines	to	improve	the	implementation	of	the	game	

	
As	 the	 time	 is	very	 limited,	 it	 is	highly	 recommended	 that	you	 read	 the	assignment	before	 the	
session.	 Please	 also	 notice	 that	 the	 session	 is	 not	 intended	 to	 complete	 the	 assignment	 but	 to	
establish	the	basis	to	continue	working	on	it	afterwards	(see	more	in	the	Game	Awards	section	
below).		
	
Office	hours:	The	office	hours	are	intended	to	solve	conceptual	doubts.	For	coding-related	issues,	
you	must	use	other	channels,	namely	Discord	and	the	Ask	a	TA	sessions.	Each	office	hours	session	
is	dedicated	to	a	specific	module	and	doubts	related	to	it	will	be	prioritized.	Therefore,	clarifying	
doubts	related	to	other	(previous)	modules	is	not	assured.		
	
Ask	a	TA	sessions:	Two	Ask	a	TA	sessions	will	be	organized	during	the	course.	In	these	sessions,	
you	will	have	the	opportunity	to	ask	some	TAs	for	help	to	solve	coding-related	issues.	Notice	that	
these	sessions	are	STRICTLY	dedicated	to	coding-related	issues	(assignments,	game	development,	
etc.)	and	any	other	doubts	must	be	solved	via	Discord	or	by	the	lecturers	during	dedicated	office	
hours	(see	above).	
	
Game	Awards:	The	last	session	of	the	course	is	not	a	lecture	one.	It	will	be	dedicated	to	the	game.	
In	this	session,	we	will	organize	an	awards	ceremony	where	the	best	game	developer(s)	will	be	
granted	a	small	prize.	To	be	invited	to	participate,	you	must	deliver	your	improved	version	of	the	
game	after	each	tutorial	session.	Delivering	each	Lab’s	game	before	the	established	deadline	will	
give	you	“one	badge”.	Collecting	at	least	4	out	of	5	badges	(Lab	2	covers	two	tutorials)	will	allow	
you	to	enter	the	final	contest	for	“the	best	game”	which	will	be	held	in	the	last	week’s	session.	Feel	
free	to	work	in	pairs	(or	small	groups)	on	the	game.	It	will	be	a	great	opportunity	to	learn	from	
each	 other	 and	 a	 good	 experience	 for	 the	 project(s)	 to	 come!	More	 information	will	 be	made	
available	as	the	game	(and	the	course)	progresses.	
	
	
Discord:	
To	 facilitate	remote	communication	between	students	and	 teachers	alike,	 some	courses	use	an	
online	 communication	 system	 named	 Discord.	 This	 software	 is	 available	 for	 a	 wide	 range	 of	
operating	systems	as	an	installable	application,	or	in	your	browser	at	https://discord.com/.	
	
You	will	find	the	invite	link	which	you	can	use	to	join	the	Discord	server	on	Canvas.	When	you	click	
on	it,	you	will	receive	access	to	the	DACS	Discord	Server	and	can	immediately	start	to	interact	with	
fellow	students,	teachers	and	teaching	assistants.	
	
Rules	and	Etiquette	
Teachers	can	be	recognised	by	their	role	(and	red	color).	
	
To	make	Discord	a	safe,	useful	and	fun	environment	for	everyone	please	take	care	of	the	etiquette	
and	rules	(read	also	Paragraph	7	about	your	class	behavior):	
-	Change	your	nickname	in	the	DACS	Server	to	your	own	name,	you	may	use	any	combination	of	
first	and	last	name.	If	you	do	not	change	your	name,	you	can	not	participate	in	the	Discord	server	
or	(if	you	do	not	comply)	may	be	kicked	from	it.	

-	Stay	polite,	even	though	it	is	easier	to	express	yourself	over	a	digital	medium,	regular	terms	of	
behaviour	to	teachers	and	fellow	students	apply.	
-	Do	not	post	or	share	solutions	to	assignments,	partial	or	otherwise.	
-	Please	refrain	from	sending	private	messages	to	teachers.	The	teachers’	main	focus	is	helping	
students	in	the	text	and	speech	channels.	
-	 Feel	 free	 to	 discuss	 the	 assignment	 and	 help	 other	 students	 as	 long	 as	 this	 does	 not	 lead	 to	
situations	where	plagiarism	can	arise.	
-	Teachers	and	TAs	are	-	in	principle	-	available	on	Discord	during	lab	hours.	If	a	teacher	answers	
outside	 the	 time	allocated	 for	 the	course	 this	 is	 their	choice	and	not	mandatory.	Moreover,	we	
cannot	offer	any	guarantee	on	the	speed	with	which	a	teacher	replies	to	a	question.	
-	You	are	allowed	to	use	emoticons,	GIFs	or	stickers,	however	be	mindful	of	the	situation,	it	should	
not	bother	students	and	teachers.	Teachers	have	the	final	say	in	the	use	of	media	in	channels	and	
whether	they	deem	it	appropriate	and	according	to	the	class	rules	(see	Paragraph	7).	
	
5.	Study	workload	
This	course	is	worth	4	ECTS	points,	which	equates	to	112	hours	of	study.	Based	on	this,	we	built	
the	weekly	plan	below.	As	indicated	there,	we	expect	8-12	hours	of	self-study	per	week.	The	
estimated	workload	can	be	summarized	as	follows:		

• 18	contact	hours	during	Lectures	and	Live	coding	sessions	
• 5	contact	hours	for	tutorials	
• 5	preparation	hours	(before	each	lecture/live	coding	session)	
• 5	review	hours	(after	each	lecture/live	coding	session)	
• 50	hours	to	complete	the	assignments	
• 10+	hours	for	the	exam	preparation	
• (optional)	7+	hours	to	complete	the	tutorials’	game	developments	
• (optional)	x	hours	to	develop	your	our	version	of	the	game	for	the	Awards	Ceremony	

	
Additionally,	you	have	the	chance	to	attend	(contact	hours):		

• 10	office	hours	
• 4	Q&A	sessions	with	TAs	for	coding-related	doubts	
• 2	“leisure”	hours	in	the	Game	Awards	ceremony	

	
	

[it	continues	on	the	next	page]	
	 	

Rough	weekly	plan	
	
Week	 Day	 Hours	 Content	 Type	 Who 	 Book	

chapters	
1	 Tuesday	5/9	 2	 Introduction	to	CS	 Lecture	/	Intro	 Enrique	

1,2,4,6	(check	
Canvas	for	
details)	

 at	your	own	pace	 1	 Variables	and	Methods	 Watch	material	 You!	

 Wednesday	6/9	 2	 >>		 Live	coding	 Daniel	

 at	your	own	pace	 1	 >>		 Review	material	 You!	
		 Thursday,	7/9	 2	 >>		 Office	hours 	 Enrique	

 Friday	8/9	 1	 >>		 Tutorial	 TA	

 at	your	own	pace	 6	 >>		 Assignment	1	(due	15/9)	 You!	
2	 at	your	own	pace	 1	 Conditionals	 Watch	material	 You!	

2,3	(check	
Canvas	for	
details)	

 Tuesday	12/9	 1	 >>	 Live	coding	 Enrique	

 at	your	own	pace	 1	 >>		 Review	material	 You!	

 Thursday,	14/9	 2	 >>		 Office	hours 	 Daniel	
		 Friday	15/9	 1	 >>		 Tutorial	 TA	

 at	your	own	pace	 8	 >>		 Assignment	2	(due	22/9)	 You!	
3	 at	your	own	pace	 1	 Loops	 Watch	material	 You!	

2,3	(check	
Canvas	for	
details)	

 Tuesday	19/9	 2	 >>	 Live	coding	 Daniel	

 at	your	own	pace	 1	 >>		 Review	material	 You!	

 Thursday,	21/9	 2	 >>		 Ask	a	TA	 TAs	

 Thursday,	21/9	 2	 >>		 Office	hours 	 Daniel	

 Friday	22/9	 1	 >>		 Tutorial	 TA	

 at	your	own	pace	 8	 >>		 Assignment	3	(due	29/9)	 You!	
4	 at	your	own	pace	 1	 Arrays	 Watch	material	 You!	

5	(check	
Canvas	for	
details)	

 Tuesday	26/9	 2	 >>		 Live	coding	 Daniel	

 at	your	own	pace	 1	 >>		 Review	material	 You!	

 Wednesday,	27/9	 2	 RECAP	 Q	&	A	session	 Daniel	

 Friday	29/9	 1	 >>		 Tutorial	 TA	

 Friday	29/9	 2	 >>		 Office	hours 	 Daniel	

 at	your	own	pace	 8	 >>		 Assignment	4	(due	6/10)	 You!	
5	 at	your	own	pace	 1	 Recursion	 Watch	material	 You!	

6	(check	
Canvas	for	
details)	

 Monday	2/10	 2	 >>		 Live	coding	 Enrique	

 Tuesday	3/10	 2	 Branching	 Live	coding	 Enrique	

 at	your	own	pace	 1	 >>		 Review	material	 You!	

 Wednesday,	4/10	 2	 >>		 Office	hours 	 Enrique	

 Friday	6/10	 1	 >>		 Tutorial	 TA	

 Friday	6/10	 2	 >>		 Ask	a	TA	 TAs	

 at	your	own	pace	 10	 >>		 Assignment	5	(due	19/10)	 You!	
6	 Project	1.1	 	
7	 Tuesday	17/10	 2	 Revising	all	content	 Exam	preparation	 Daniel	 	

 at	your	own	pace	 10	 Revising	all	content	 Review	material	 You!	 	
 Wednesday	18/10	 2	 Game	award	ceremony	 Special	session	 Enrique	 	
 at	your	own	pace	 10	 Exam	examples	 Assignment	6	(due	19/10)	 You!	 	

8	 TBA	 20	 Study	and	Exam	 You!	 	
	
Note:	 the	due	dates	 included	in	the	Assignment	rows	are	just	 indicative.	The	submission	of	the	
assignments	is	neither	mandatory	nor	part	of	the	grade.	
	
	
	 	

6.	Intended	Learning	Outcomes	and	Learning	Goals	

The	Intended	Learning	Outcomes	(ILOs)	of	the	PrP	course	are	the	following:		

Intended	learning	outcomes	(ILOs)	 Teaching	&	learning	activities	(TLAs)	
Knowledge	and	understanding:	
Student	will	be	able	to	explain	the	methodological	and	
theoretical	principles	of	basic	procedural	computer	
programming.	

	
-	Classical	lectures	
	

Applying	knowledge	and	understanding:	
Students	will	be	able	to	implement	basic,	procedural,	non-
object	oriented,	computer	programs,	using	methods,	arrays,	
loops,	conditional	statements	and	recursive	execution.	

	
-	Programming	exercises	

Making	judgement:	
Students	will	be	able	to	judge	the	quality	and	correctness	of	
simple	procedural,	non-object-oriented,	computer	programs.	

	
-	Classical	lectures	
-	Pair	programming	exercises	

Communication:	
Students	can	discuss	(oral	and	written)	the	correct	use	of	
standard	procedural	programming	constructs	and	
algorithmic	basics.	

	
-	Classical	lectures	
-	Programming	exercises	

Learning	skills:	
Students	learn	to	recognize	their	own	lack	of	knowledge	and	
understanding	and	take	appropriate	action	such	as	
consulting	additional	material	or	other	sources	of	help	

	
-	Programming	exercises	

	

These	 ILOs	 can	 be	 split	 into	more	 concrete	 Learning	 Goals	 (LGs).	 The	 summary	 of	 these	 LGs,	
grouped	by	course	module,	is	shown	below:	

• Module	1:	Introduction	to	computer	science	
o You	know	the	four	components	of	the	Von	Neumann	Architecture	
o Control	Unit			
o Arithmetic/Logic	Unit			
o Memory			
o Input/Output		
o You	understand	the	execution	cycle	on	the	Von	Neumann	Architecture	
o You	understand	the	binary	representation	
o You	know	the	basics	of	assembler	
o You	 know	 the	 difference	 between	 assembly	 and	 high-level	 programming	

languages	
o You	know	the	difference	between	compilation	vs	interpreted	code	

• Module	2:	Variables	and	methods	
o You	know	the	difference	between	a	constant	and	a	variable	and	know	when	to	

use	which	one	
o You	know	how	to	name,	declare,	and	instantiate	variables	
o You	can	use	variables	in	your	code	effectively	using	operators	
o You	know	properties	about	variables	and	constants	such	as	data	types	and	scope	
o You	know	about	casting,	how	and	when	to	use	it.	Pitfalls	and	possible	errors	

• Module	3:	Conditionals	
o You	understand	the	control	flow,	how	and	when	to	use	it	
o You	understand	the	differences	when	comparing	basic	type	variables	and	Strings	

(and	other	objects)	
o You	 understand	 the	 Boolean	 expression	 evaluation	 and	 the	 concept	 of	 Lazy	

evaluation	
o You	understand	the	nested	conditionals,	how	and	when	to	use	them	
o You	understand	the	class	Scanner,	how	and	when	to	use	it	
o You	know	some	useful	classes	such	as	Math	(random)	
o You	know	some	methods	for	String	manipulation	

• Module	4:	Loops	
o You	know	how	to	use	different	kinds	of	loops	

§ for	
§ while	
§ do	while	

o You	understand	the	conditions	under	which	loops	run	and	stop	
o You	are	familiar	with	the	pitfalls	of	loops	and	how	to	avoid	them	
o You	know	how	to	write	and	recognize	nested	loops	

• Module	5:	Arrays	
o You	know	what	arrays	are	and	how	to	declare	them		
o You	can	use	an	array	to	store	and	access	values	
o You	can	combine	loops	and	arrays	to	iterate	over	values	
o You	are	aware	of	the	limitations	of	arrays	
o You	know	what	multi-dimensional	arrays	are	and	how	to	use	them	
o You	know	what	pass-by-value	means	and	what	the	consequences	are	
o You	know	the	difference	between	single	variables	and	arrays	
o You	are	aware	of	common	pitfalls	when	using	arrays	

• Module	6:	Recursion	
o You	understand	the	differences	between	“regular”	loops	and	recursion	
o You	understand	the	concepts	of	Base	case	and	Recursive	call,	how	and	when	to	

use	them	
o You	know	the	concept	of	mutual	recursion	
o You	understand	the	problem	of	(lack	of)	efficiency	in	recursive	solutions	and	a	

possible	solution	(tabling)	

	
7.	Assessment	

We	expect	all	students	to	complete	the	quizzes	and	participate	 in	class.	Students	are	evaluated	
through	a	final	exam	taken	using	the	software	Testvision	(and	using	UM	Chromebooks)	which	is	
graded	out	of	10.	The	course	assignments	or	any	other	proposed	exercise	(quizzes,	homework,	
etc.)	do	not	count	for	the	final	grade.	However,	around	2	out	of	10	points	from	the	exam	will	be	
allocated	 to	 an	 exercise	 closely	 related	 to	 the	 assignments.	 The	 structure	 of	 the	 exam	 can	 be	
estimated	as	follows:	

• Theoretical	questions	+	small	coding	exercises	(identify	errors,	analyse	a	piece	of	code,	fill	
in	the	gaps,	etc.):	~50%	

• Practical	exercises	(usually,	2-3	exercises):		
o Exercise	closely	related	to	the	proposed	assignments:	~20%	
o Pseudocode	for	“real-life”	coding	problems:	~10%	
o Java	code	for	“real-life”	coding	problems:	~20%	

The	final	grade	is	computed	as	follows:		

final	grade	(out	of	10)	=	exam	grade	

Resits		

In	the	case	of	no	passing	grade	during	the	normal	period,	you	can	take	a	resit	exam	(same	format	
as	the	normal	period	exam).	If	you	delivered	your	assignments	during	the	normal	period	they	still	
count	towards	your	final	grade.	In	this	case,	your	final	grade	will	be	computed	as	follows:	

resit	final	grade	(out	of	10)	=	resit	exam	

	

	

8.	Class	Policies	(diversity/inclusivity,	cheating)	

Behavior	in	Class	(online	and	offline)	

• Let	us	know	about	your	preferred	names	(if	they	differ	from	the	ones	in	the	course	catalogue).	
• We	do	not	 tolerate	any	 form	of	discrimination	or	violence	 in	classes.	 If	we	observe	or	hear	

about	a	person	in	class	attacking,	harassing	or	ridiculing	someone	else	because	of	their	outer	
appearance,	language,	age,	origin,	gender,	sexual	orientation,	religion,	nationality,	abilities,	or	
because	of	physical	or	mental	impairments	or	disabilities,	we	will	take	action	to	stop	this	kind	
of	behavior.	

• We	expect	you	 to	 respect	other	participants	 in	 class,	 and	 to	avoid	any	behavior	 that	might	
impact	other	students’	ability	to	do	well	in	the	class.	This	includes	talking	loudly	or	distracting	
people	during	lectures.	You	should	feel	free	to	turn	your	attention	elsewhere	if	you	want,	but	
we	expect	you	to	never	do	so	at	the	expense	of	other	students’	ability	to	focus	on	the	class.		

• Same	rules	apply	to	the	class	online	environment:	Pay	attention	to	your	comments,	words,	etc.	
when	chatting	during	lectures	and/or	on	Discord.	

• Our	own	behavior	in	class	should	follow	the	rules	given	above,	just	as	much	as	yours.	In	case	
we	say	or	do	something	that	contradicts	these	guidelines,	please	point	out	the	mistake	and	be	
prepared	to	discuss	the	issue	with	us,	either	in	class	or	in	private.	

	
Cheating/Honor	Code	
	

• No	code	or	solutions	are	to	be	distributed	to	other	students	either	electronically	(i.e.	e-mail)	or	
on	 paper	 or	 posted	 online	 where	 they	 can	 easily	 be	 discovered	 (i.e.	 Facebook,	 webpages,	
forums,	discussion	groups,	etc.)	

• Be	sure	that	you	read	the	terms	of	the	license	for	the	code	that	you	are	reusing.	Most	code	that	
is	found	openly	on	the	internet	has	specific	licenses	that	you	should	not	violate.	

• When	there	is	doubt	regarding	the	honorability	of	an	action,	you	need	to	ask!	
• Please	 do	 not	 copy	 your	 assignments	 and/or	 do	 not	 try	 to	 cheat!	 You	 won’t	 learn	 any	

programming	(and	you	will	need	it	for	the	rest	of	your	studies).	
	
9.	Tips	&	Tricks	for	the	course	
		

• Regardless	of	what	fellow	students	will	tell	you,	PrP	(former	CS1)	is	one	of	the	toughest	block	
1	courses.	Make	sure	that	you	have	a	good	understanding	of	the	content.	Otherwise,	it	will	be	
difficult	to	catch	up.	

• If	you	are	having	trouble	with	the	contents	of	one	lecture/tutorial,	you	can	catch	up	on	that	
lecture/tutorial	 at	 home.	 You	 can	 talk	 to	 other	 class	 participants,	 go	 through	 the	 lecture	
materials,	or	use	the	recommended	or	other	online	resources,	or	books	to	read	up	on	specific	
topics.	If,	after	checking	all	the	material	proposed,	you	need	additional	materials,	feel	free	
to	talk	to	us.	We	will	be	happy	to	provide	resources	as	needed.	

• If	you	have	no	idea	how	to	get	started	on	an	assignment,	start	by	re-reading	the	relevant	lecture	
contents	and	game	assignment.	You	can	also	discuss	the	task	with	other	students.	If	you	ask	for	
tips	in	the	tutorial	or	Ask	a	TA	sessions,	the	teaching	assistants	will	help	you	develop	your	own	
approach	to	the	problem.	

• If	you	are	unhappy	throughout	several	sessions	(lectures/tutorials)	of	the	course	and	feel	like	
you	are	not	progressing,	do	not	hesitate	to	talk	to	us.	You	can	contact	us	in	person	or	via	email	
(see	above	how	you	can	contact	us).	Together,	we	can	figure	out	what	the	problem	is	and	find	
solutions	that	work	for	you.	

• Course	 lecturers	 enjoy	 teaching	 and	 are	 looking	 forward	 to	 teaching	 you	 the	 basics	 of	
programming.	Any	feedback	for	us	is	valuable	so	feel	free	to	contact	us.	

