Relations: overview
Definition: a relation R on a set A is a subject of AXA
Three fundamental properties: a relation R on a set A is
• reflexive if $\forall x \in A$: xRX
\circ Not reflexive if $\exists x \in A : \times R \times$
• Symmetric if Vx, y EA: XRy -> yRX
• Not symmetric if 3x, y EA xRy A YRX
• transitive if VX, y, 2 EA: (XRy ~ yR2) -> XR2
• Not transitive if ∃x,y,2 GA : xRy ∧ yR2 ∧ XR2
Equivalence relation R on A:
• Symmetric, transitive, reflexive
 Induces a partition of A, subsets = equivalence classes
• In an equivalence class, all elements are related to each other

To	de	24																								
• A	11	Li	s S	y	M1	r	10		ri	C	•	re		.0		ic		1	3							
•	a		ia		0	rc	Le		•																	
			• •		• •	C.		• •		••••		•	• •													
© I																										
• (M	2	05	sil		O	N	K	24			L	M	C	Ŀ	- Ç	>		M						
										• •		•														
Boo	K	ch	ar	rte	r	З,	Se	c	tia	on	S S	3	3		n,	4,		3.	5,		5.7	•				

Recap	
All balls in the box are red Negation: there is a ball in the box that is not red,	All balls in the box are yellow Negation: there is a ball in the box that is not yellow.
Not all balls in the box are red and not all balls in the box are yellow.	All balls in the box are red and all balls in the box are yellow (since there are no balls in the box)
There is at least one ball that is not red.	

Anti-symmetry:			
Not the negation of symmetry			
• An arrow hetween different elements can only I direction.	90	. (n	
$\begin{array}{c} cxample & xRy & if X \leq y, on R \\ & xRy & if X is a multiple of y \\ & xRy & if X = y+10 \end{array}$			
Definition: $\forall x, y \in A : (xRy \land yRx) \rightarrow x = y$ $\forall x, y \in A : (xRy \land x \neq y) \rightarrow yRx$			
NOT A.S.			

Symmetry vs. Anti-symmetry	
Symmetry all arrows go in 2 directions Anti-symmetry arrows between different elements counnot go in both directions	. .
$ASV \\ SX \\ T \\ RX$	SX ASX TX RX
$ \begin{array}{c} $	S AS T R X

Exan	nple	5						
• XRy	j	x	+10 ,	on IN				
		y = 20				1	10 1+10	
	NOT S	ynnerrei				· · · · · ·		
	x = 1, 3 and	1 = 2 1 ≠ 2 NOT A	hin X NTI-Syl	Ry 510 Kx , 810 →METRI	ce 1 5 r ce 2 c	< 2+10 < 1+10		
• XRy	if X assurec then	= y + 10 x Ry an X =	, 01 H nd x≠ y+10	y => .y=	X-10	≠ ×+1 ¤ ×	 	
	AUTI-	sy Mrie-	TRIC	· · · · · ·	50 Y	· · · · ·		

Partial order A relation that is reflexive, transitive and anti-symmetric is calle a partial order	d
example &, on P(IN)	
* replexive for all set A E P(IN) A CA every set is a subset of duly.	
* anti-symmetry : if A = B and B ≤ A, then A=B (definition of set equality !)	
+ transitive if $A \in B$ and $B \subseteq C$, then $A \subseteq C$ Let $x \in A$. Thus $x \in B$ since $A \subseteq B$. Then $x \in C$, since $B \subseteq C$.	
Ø G GIN G GI,29 G GI,2,39 C	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	

$x Ry i X \in y$, on R
· X EX true -> reflexive.
· J x ≤ y and y ≤ x, thin x = y -> auti-sgin
· x ≤ y and y ≤ 2 -> x ≤ 2 -> transitive.
• xRy of x is a multiple of y, on M
· reflexive? XRX y X is a multiple of X
-> true for all x E MI.
• transitive? XRY NYR2 -> XR2
xRy, $ro x = Ry$ (KEN)
yR_2 , so $y = M_2$ (MEIH)
then $x = k(m_2) = (k_m)z$, so xR_2
o anti-syn? XRY ~ yRX
$\Rightarrow x = ky \land y = mx \Rightarrow x = kmx$ $\Rightarrow k = m = 1 \Rightarrow y = x$
$\Rightarrow k = n = 1 \Rightarrow y = x$

Partial	and	total	order		
transitive anti-symm reflexive	etne		al order ∀x,y EA	F: XRy	vyRx
NOT	EXAM Co this	MAT slide on	TERIAL ly 1		

A fun functi • Nota	ctio Ion,	n f f(x	is) h	a n as c	nap 1 Ur	VIQI	JE	vali	re											
						/	(*)	= X	2	f	(/&)?				•	ſ	(*)	· · · · A · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		**************************************				555.257.257.257.257.257.257.257.257.257.				o o enconsector o o o o		•		•	•	• • • • • • • • • • • • • • • • • • •				
											NOT		2	fu	ncł	hoi	1			

$f: A \rightarrow B$, where $f(x) = \cdots$
domain co-domain
domain Do-domain J(x) is UNIQUELY defined for EVERY XEA
f f f f f f f f f f f f f f f f f f f
canse
A
• the RANGE of a function: the act of elements in B that or reached by f
range $L[1] = \{y \in B \exists x \in A : y = f(x)\}$
nange (j) \subseteq co-domain (j)

Example.
$g: \mathbb{Z} \to \mathbb{Z}$, where $g(x) = x - 4$
$g: \mathbb{Z} \to \mathbb{Z}$, where $g(x) = x + 4$.
• $g \circ g : \overline{Z} \to \overline{Z}$ is properly defined, since the co-domain of g and the domain of g are the come (range $(g) = \{s, 8, 13,, Y \in \overline{Z}\}$
of g and the domain of g are the same
(langelg) = {5,8,13,, 4 ⊆ Z
f(g(x)) = f(x + 6) = x
$x \to x^2 + 4 \to (x^2 + 4) - 4 = x^2$
· g of I -> I is properly defined, since the cordonnain
of I and the domain of g are the same
of f and the domain of g are the same $(nange 1g) = \overline{L} \subseteq \overline{Z}$
$g(f(x)) = g(x-4) = (x-4)^2 + 4 = x^2 - 8x + 20$
$\begin{array}{c} y \\ x \\ f \end{array} \begin{array}{c} x \\ f \end{array} \begin{array}{c} x \\ y \end{array} \end{array} \begin{array}{c} x \\ y \end{array} \begin{array}{c} x \\ y \end{array} \end{array} \begin{array}{c} x \\ y \end{array} \begin{array}{c} x \\ y \end{array} \end{array} \begin{array}{c} x \\ y \end{array} \end{array} \begin{array}{c} x \\ x \end{array} \end{array} \begin{array}{c} x \\ x \end{array} \end{array} \begin{array}{c} x \\ y \end{array} \end{array} \begin{array}{c} x \\ x \end{array} \end{array} $ \end{array}

Checklist
• Do you know what anti-symmetry is?
• Do you understand that symmetry and anti- symmetry are NOT opposites?
• Do you know when a relation is a partial order
(and how to prove this)?
• Do you understand what a function is?
• Do you know the meaning of 'domain', 'co-
domain' and 'range'?
• Do you understand how function composition works?