Relations: overview
Definition: a relation R or a set A is a sunset of $A \times A$

Three fundamental properties: a relation R on a set A is

- reflexive if $\forall x \in \mathcal{A} \therefore x R x$

Not reflexive if $\exists x \in A$ x \times

- symmetric if $\forall x, y \in A: x R y \rightarrow y R x$

Not symmetric if $\exists x, y \in A \quad \therefore R y \in y X x$

- transitive if $\forall x_{1} y_{1} z \in A:\left(x R_{y} \cap y R_{2}\right) \rightarrow x R_{2}$

Not transitive if $\exists x, y_{1} 2 \in A \quad x R_{y} \wedge y R_{2} \wedge \dot{X} \mathbb{R}_{2}$

Equivalence relation R on A :

- symmetric, transitive, reflexive
- Induces a partition of A, subsets $=$ equivalence classes
- In an equivalence class, all elements are related to each other

Today

- Anti-symmetric relations - Partial order
- Intro to functions
- Composition of functions

Book: chapler 3, sections 3.3, 3.4, 3.6, 3.7

Recap

All balls in the box are red

Negation: there is a ball in the box that is not red.

All balls in the box are yellow

Negation: there is a ball in the box that is not yellow.

Not all balls in the box are red and not all balls in the box are yellow:

There is at least one ball that is not red.
There is at least one ball that is not yellow.

Anti-symmetry:
Not the negation of gi mime try

- An arrow between different elements can only go in 1 direction.
example $x R y$ of $x \leqslant y$, on \mathbb{R}
$x R_{y}$ if x is a multiple of y, on w
$x R_{y} \quad$ f $x=y+10$
Definition $\forall \forall x \in A \therefore(x R y \wedge y R x) \rightarrow x=y$

$$
\forall x y \in A \quad(x R y \wedge x \neq y) \rightarrow y R x
$$

3 NOT AS

Symmetry vs. Anti-symmetry
Symmetry all arrows 80 in 2 directions Anti-symmetry arrows between different elements cannot so in both directions

S
AS x
TX
$R \times$

S AS x $T \cdot x$
$R \cdot x$

Examples

- PRy if $x \leqslant y+10$, on IN
$x=1, y=20$. Then $x R y$, since $1 \leqslant 20+10$ $y \mathbb{x}$, since $20 \neq 1+10$
Nor symmetric
$x=1, y=2$ Thin $x R y$ since $1 \leq 2+10$
and $1 \neq 2$ yR since $2 \leqslant 1+10$
\rightarrow NOT ANTI-SyMTETRIC
$\rightarrow x R_{y}$ if $x=y+10$, on H
assume $x R_{y}$ and $x \neq y$
thin $x=y+10 \Rightarrow y=x-10 \neq x+10$
so ykx
ANTI- StyMIE TRIC

Partial order
A relation that is reflexive, transitive and anti-symmetric is called a partial order
example : \subseteq, on $\mathbb{P}(\mathbb{N})$
*. reflexive for all st $A \in \mathbb{P}(\mathbb{N}) \quad A \subseteq A$
every xt is a subset of alxely:

* anti symmetry if $A \subseteq B$ and $B \subseteq A$, the $A=B$
(definition of ret equality!)
* transitive if $A \leqslant B$ and $B \leq C$, then $A \leqslant C$

Let $x \in A$. Thin $x \in B$, since $A \leq B$. Then $x \in C$; since $B \leq C$.
$\phi \leq\{1\} \leq\{1,2\} \leq\{1,2 ; 3\} \leq$
$\{13\}$?
$x R y$ if $x \leqslant y$ on \mathbb{R}
$\therefore x \leqslant x$ tove \rightarrow ceflexive
\rightarrow of $x \leqslant y$ and $y \leqslant x$, thin $x=y \rightarrow$ anti-sgin
$\therefore x \leqslant y$ and $y \leqslant 2 \rightarrow x \leqslant 2 \longrightarrow \rightarrow$ transitive.

- $x R y$ of x is a multiple of y, on N
- reflexive? $x R x$ if x is a cmultinle of x
\rightarrow tiue for all $x \in N:$
- transitice ? xRy $\wedge y R z \rightarrow x R z$

$$
\begin{aligned}
& x R_{y}, x_{0} \quad x=k y \quad(k \in \mathbb{N}) \\
& y R_{2}, \text { so } y=m 2 \quad(m \in \mathbb{N})
\end{aligned}
$$

then $x=k(\min)=(k \ln)$, so $x R_{2}$

- anti-syn? $x R y$ ^ yRx

$$
\begin{aligned}
& \Rightarrow x=k y \wedge y=m x \Rightarrow x=k m x \\
& \Rightarrow k=m=1 \Rightarrow y-x
\end{aligned}
$$

Partial and total order

NOT EXAM MATERIAL ت (Co this slide only)

Functions
A function f is a mapping from a set A to a set B. To be a function, $f(x)$ has a UNIQUE value for EVERY element x of A.

- Notation: $f: A \rightarrow B$ where $f(x)=$...

$f: A \rightarrow B$, where $f(x)=-$?
domain co -domain
$f(x)$ is uniquely defined for evERy $x \in A$

- The RANGE of a function the ext of elanents in B that of reached by f

$$
\begin{aligned}
& \operatorname{cange}(f)=\{y \in B \exists x \in A: y=f(x)\} \\
& \text { range }(f) \subseteq \text { co-domain }(f)
\end{aligned}
$$

Composition of functions
Consider functions $g: A \rightarrow B$ and $f: B \rightarrow C$.
Then $(f \circ g)(x)=f(g(x))$ is the function obtained first using g and then using f.

- Domain of (fog) =domain g g
- co-domain of $(f \circ g)=$ co-domain of f

fog $: A \rightarrow C$ can be properly defined if range $(g) \leq$ domain (f)

Example:
$f: \overline{\mathbb{Z}} \rightarrow \mathbb{Z}_{\text {, weer }} f(x)=x-4$
$g: \mathbb{Z} \rightarrow \mathbb{Z}$, where $g(x)=x^{2}+4$:

- fog $: \overline{\mathbb{Z}} \rightarrow \overline{\mathbb{Z}}$ is properly define t, since the codomair of g and the domain of f ar the eave (range $\left.l \delta_{2}\right)=\{5,8,13, \ldots\} \subseteq \mathbb{Z}$

$$
\begin{aligned}
& f(g(x))=f\left(x^{2}+4\right)=x^{2} \\
& x \rightarrow\left(x^{2}+4\right)-4=x^{2}
\end{aligned}
$$

- g of $\mathbb{Z} \rightarrow \mathbb{Z}$ is properly defined, since the cordomain of f and the domain of g ore the nome (Range $(f)=\mathbb{Z} \leq \mathbb{Z})$

$$
\begin{gathered}
g(f(x))=g(x-4)=(x-4)^{2}+4=x^{2}-8 x+20 \\
x \vec{f} x-4 \rightarrow(x-4)^{2}+4
\end{gathered}
$$

Checklist

- Do you know what anki-symmelry is?
- Do you understand that symmetry and antisymmetry are NOT opposites?
- Do you know when a relation is a partial order (and how to prove this)?
- Do you understand what a function is?
- Do you know the meaning of 'domain', 'codomain' and 'range'?
- Do you understand how function composition works?

