Course overview

- Logic (week 1)
- Proof techniques (weeks 1-2)
- See theory (weeks 2-3)
- Relations loday + next lecture
- Functions (week 4)
- Combinalorics (week s)

Overview of today

- Relations: definition
- Reflexive relations
- Symmetric relations
- Transitive relations
- Equivalence relations

Book chapter 3, sections 3.1, 3.2, 3.3

Relations
A relation R describes the relationship between different elements of a given set A.

- Notation: $x R y, x, y \in A$
- Example:

$$
\begin{aligned}
& A=\{1,2,3\} \quad x R y \quad\}_{1} \leq y \\
& \mid R 2 \quad 2 R\}
\end{aligned}
$$

- Formal (abstract) definition: A relation R on a set A is a subset of the product set $A \times A$.

$$
\begin{aligned}
& \mathbf{A} \times \mathbf{A}=\{(1,1),(1,2),(1,3) ;(2,1),(2,2),(2,3),(3,1),(3,2) \\
& (3,3)\}
\end{aligned}
$$

Relation diagrams

$$
A=\{1,2,3\}
$$

Ry of $x<y$

$x R y$ of $x+y \geqslant 5$

x Ry if $x=y$

Reflexive relations
A relation R on a set A is reflexive if every element of A is related to itself (every element has a loop)

$$
\forall x \in A \quad x R x
$$

negation $\because \exists \times \in A \times R \times$

x Ry if $x<y$
not reflexive

$x R y$ if $x+y \geqslant 5$ not reflexive
x Ry if $x=y$
 reflexive example $s: \leqslant$ (on $\mathbb{R}), \leq$ (on sets),

Symmelric relakions
A relation R on a set A is symmelric if for all elements a, in A : $a R b \rightarrow B R a$
$\forall a, b \in A: \dot{R b} \rightarrow b R a$ (evey arcow gas in 2

x Ry if $x<y$
not syminetric

$x R y$ of $x+y \geqslant 5$ symmeta C $x R y \quad x+y \geqslant r$
$\leftrightarrow y_{y} \rightarrow x \geqslant 5$

$x R y$ if $x=y$ syminetrc

Transitive relations
A relation R on a set A is transitive if for all elements a, b, c in A : $\left(a R b^{\sim} b R c\right) \rightarrow a R c$
$\forall a, b, c \in A \therefore(a R b \wedge b R C) \rightarrow a R c$

x Ry of $x<y$
transitive

$x R y$ of $x+y \geqslant 5$ not transitive $2 R 3 \wedge 3 R 2$ but ed

Equivalence relations
A relation R is called an equivalence relation if it is reflexive, symmetric and transitive.
$L_{C} \in A=\mathbb{N}$
$x R y$ if $x-y$ is even

- reflexive? $\forall x \in A: x R x$

Let $x \in \mathbb{H} \cdot x-x=0$ is even so $x R x$

- symmetric ? $\forall x, y \in A=x R y \rightarrow y R x$

Assume $x, y \in N, x R y$ Then $x-y$ is even then $y-x$ is cen So $y R x$

- transitive? $\forall x, y, z \in A:\left(x R y \wedge y R_{2}\right) \rightarrow x R z$

Assure $x, y, z \in N, x R y, y R z$
then $x-y$ is even and $y-2$ is even then $(x-y)+(y-2)$ is ever (sun of so $x-2$ is even $\rightarrow x R z$ ever numbers)
R is reflexive, transitive and nymmetric \rightarrow if is an equivalence relation!!

Equivalence classes

An equivalence relation on A induces a partition of A. sunsets - equivalence classes.

on $\pi, x R y$ if $x^{2}=y^{2}$

$$
x=y
$$

Checklist

- Do you understand what a relation is?
- Given a relation, are you able bo draw a relation diagram?
- Do you know what symmetry, Eransikivily and reflexivity are?
- Can you prove (or disprove) that a relation has these properties?
- Do you know how ko prove that a relation is an equivalence relation?
- Do you know how ko identify the equivalence classes of an equivalence relation?

Example $\mathbb{R} \times \mathbb{R},(x, y) R(a, b)$ of $x+y=a+b$

- reflexive $\forall(x, y) \in \mathbb{R} \times \mathbb{R} \quad(x, y) R(x, y)$
$(x, y) R(x, y)$ if $x+y=x+y$ Erie
- symmetric $\forall\left(x_{1}, y_{i}\right),\left(x_{i}, y_{i}\right) \in \mathbb{R} \times \mathbb{R}$,

$$
\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \rightarrow\left(x_{2}, y_{2}\right) R\left(x_{1}, y_{1}\right)
$$

Let

$$
\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \text {, Then } x_{1}+y_{1}=x_{2}+y_{2}
$$

then $x_{2}+y_{2}=x_{1}+y_{1}$
So $\left(x_{2}, y_{2}\right) R\left(x_{1}, y_{1}\right)$ true
transitive $\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right) \in \mathbb{R} \times \mathbb{R}$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \wedge\left(x_{2}, y_{2}\right) R\left(x_{3}, y_{3}\right) \rightarrow \\
& \left(x_{1} y_{1}\right) R\left(x_{3}, y_{3}\right)
\end{aligned}
$$

Let $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \wedge\left(x_{2}, y_{2}\right) R\left(x_{3}, y_{3}\right)$
then $x_{1}+y_{1}=x_{2}+y_{2} \cap x_{2}+y_{2}=x_{3}+y_{3}$
so $\quad x_{1}+y_{1}=x_{3}+y_{3}$
so $\left(x_{1}, y_{1}\right) R\left(x_{3} ; y_{3}\right)$ dive

$$
(x, y) R(a, b) \text { if } x+y=a+b
$$

