Overview of the course - Proposilional logic lecture 1

- Proof lechniques Lectures 2-4
- Set theory boday and next lecture
- Relations lectures 7-8
- Functions lectures 8-9
- Combinatorics Lectures 10-11

Book: Chapter 2, sections 2.1, 2.2, 2.3

Sets

- A set: collection of specified objects
$A=\{1,2,3,4\}$ element (mentor) $\quad 1 \in A$
$\mathbb{N}, \mathbb{I}, \mathbb{R}$
- Sets are not ordered $\quad\{1,2,3,4\}=\{2,4,3,1\}$
- Sets have no duplicate elements $\quad\{1,1,2\}=\{1,2\}$
- Sets can be finite or infinite
- Can be empty $\}, \varnothing$
- Cardinality of a set $=$ number of elements

$$
|\{1,2,3,4\}|=4,1\{ \}\}=0,1\{1,\{2,3\}\} \mid=2
$$

Describing sets

$$
\begin{aligned}
& A=\{1,2,3,4\} \\
& A=\{x: x \in \mathbb{N} \wedge 1 \leq x \leq 4\} \\
& A=\{x \in \mathbb{N}: x<5\} \\
& \mathbb{N}=\{1,2,3, \ldots\} \\
& \mathbb{Z}=\{\ldots,-1,0,1,2, \ldots\}
\end{aligned}
$$

Subsets
The set B is a subset of the set $A \Leftrightarrow$ every element of B is also an element of A
$B=\{x: x$ is a student at DACS $\}$
$A=\{x: x$ is a student at UM $\}$
\Rightarrow all mentors of B ore also in A $B \subset A$ (s) is a subset.

$$
\left[\begin{array}{l}
\phi \subseteq A \\
A \leq A
\end{array}\right.
$$

$$
\begin{aligned}
& B \leq A \Leftrightarrow \forall x \in B: x \in A \\
& \forall x:(x \in B) \rightarrow(x \in A) \\
& \{4 \neq\{\varphi\}
\end{aligned}
$$

Set equality

$$
A=B
$$

$A=B$ if they hove the came elements

$$
\begin{gathered}
\{2,3\}=\left\{x: x^{2}-5 x+6=0\right\} \\
A \\
\{-1,-2,1,2\}=\left\{x: x^{2}=4 \vee x^{2}=1\right\}
\end{gathered}
$$

All elements of A are dements of B and allelenent of B ore elements of A

$$
(A \subseteq B \quad B \subseteq A) \Leftrightarrow A=B
$$

Union, intersection, difference of sets

- union Av b

The SET AUB is $\{x: x \in A \vee x \in B\}$

- intersection $A \cap B$
the SET $A \cap B$ is $\{x: x \in A \wedge x \in B\}$

- Difference $A \backslash B(A-B)$ the ser $A \mid B$ is $\{x: x \in A \wedge x \notin B\}$

Complement of a set complement of $A: A^{C}$ the $S \in T \quad\{x: x \notin A\}$

$$
\phi^{c}=0
$$

Proofs with sets: example

$$
\begin{aligned}
& A \subseteq B \Leftrightarrow A \cup B=B \\
\Rightarrow & \Rightarrow(A \subseteq B) \Rightarrow(A \cup B=B) \\
\Leftarrow & (A \cup B=B) \Rightarrow A \subseteq B \\
\Rightarrow & 11 \cdot B \subseteq A \cup B \\
& \text { Let } x \in B
\end{aligned}
$$

$$
\text { then } x \in B \vee x \in A
$$

Venn diagrams are

$$
\text { then } x \in(A \cup B)
$$ NOT A PROOF !!!

2. $A \cup B \subseteq B$

Let $x \in A \cup B$
then $x \in A \vee x \in B$
If $x \in A$, then $x \in B$ (since $A \subseteq B$)
if $x \in B$, then $x \in B$

$$
\begin{aligned}
\Rightarrow & (A \cup B \subseteq B) \wedge B \subseteq(A \cup B) \\
\Rightarrow & A \cup B=B \\
\Leftrightarrow & ((A \cup B)=B) \Rightarrow A \subseteq B \\
& \text { Let } x \in A \\
& \text { then } x \in A \cup x \in B \\
& \text { then } x \in(A \cup B) \\
& \text { then } x \in B \quad(\text { since } A \cup B=B)
\end{aligned}
$$

L, $A \subseteq B$

$$
(A \subseteq B) \Rightarrow\left(B^{c} \subseteq A^{c}\right)
$$

Proof 1. Let $x \in B^{C}$

$$
\begin{aligned}
& t \text { thin } x \notin B \quad \text { (def.) } \\
& \text { the }
\end{aligned}
$$

then $x \notin A$
(If $x \in A$, then also $x \in B$, because $A \subseteq B$)
so $x \in A^{c}$

$$
\Rightarrow B^{C} \subseteq A^{C}
$$

Proof 2. $\quad A \leq B$
$\Leftrightarrow \forall x:(x \in A) \rightarrow(x \in B)$ (def. of subset)
$\Leftrightarrow \forall x:(x \notin B) \rightarrow(x \notin A)$ (contrapositive)
$\Leftrightarrow \forall x:\left(x \in B^{c}\right) \rightarrow\left(x \in A^{c}\right)$ (def of complement)
$\Leftrightarrow B^{C} \leq A^{C} \quad$ (def of subset)

Associativity

$$
(1+2)+3=1+(2+3)
$$

addition is associative
Ls it doesn't matter where I pot
the brackets

$$
\begin{aligned}
& (2 \times 3) \times 4=2 \times(3 \times 4) \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

"intersection" is associative

$$
A \cup(B \cup C)=(A \cup B) \cup C
$$

"union" is associative

Distributive Laws

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& 2 \times(3+4)=(2 \times 3)+(2 \times 4)
\end{aligned}
$$

multiplication distributes over addition
Vem-diagram $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cup(B \cap C)$

$A \cup(B \cap C)$ - everything that is

aud

ave

$(A \cup B) \cap(A \cup C)=$ the area coloured in the two plots
$(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$

union = everything Prat is coloured.

Proof : Div
Remember: Venn diagrams are Not a proof!

De Morgan Laws

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

You can use the associative, distributive and De Morgan Laws without a proof (but proving them is still a good exercise).

Checklist

- Do you understand how set membership works? - Do you understand the definition of a subset, and how to prove that set A is a subset of B ?
- Do you understand the meaning of intersection, union, complement, difference of sets?
- Do you know how to use venn diagrams to help develop an intuition?
- Do you know how to prove that two sets are equal?

