Overview: Proof techniques Direct proof

You go in logical steps from the assumption to the conclusion.
Counter-examples
To disprove a "for all" statement, you provide a single instance for which the property is not true.
Proof by contradiction
You assume that the negation is true, and come to a contradiction.
Contrapositive proof
Instead of $p \rightarrow q$, you prove (not $q) \rightarrow($ not p)
Biconditional proof
To prove a $p<>q$ statement, you need to prove $p \rightarrow q$ AND $q \rightarrow p$
TODAY: Proof by induction
Book: Chapter 1, section 1.6

Q: Can you calculate the sum $1+2+3+\ldots+(n-1)+n$ (with n a natural number)?

- sum =0
$\operatorname{for}(i=1, i++, i=n)$
$(84 m=$ sun ti)
$\begin{aligned} \sum_{i=1}^{n} i & =1+2+\cdots+n \\ & =\frac{n}{2}(n+1)\end{aligned}$

Mathematical induction

- proof technique for statements of the form $\left.(\forall n \geqslant N, n \in \mathbb{Z}) P_{n}\right)$

Two steps:

1. Base case: proof of $P(N)$
(the statement holds for the first number, the first domino falls)
2. Induction step: proof of (for all $n \geqslant N)(P(n) \rightarrow P(n+1)$)
(If the n-th domino falls, so does the $(n+1)$-th)

- $P(N)$ is trove: Bax case
- $p(n) \rightarrow p(n+1) \forall n$ (induction step)

$$
\begin{aligned}
& p(N), p(N) \rightarrow p(N+1) \Rightarrow p(N+1) \\
& p(2) \rightarrow p(3) \\
& p(3) \rightarrow p(4)
\end{aligned}
$$

$$
(\forall n \in \mathbb{N})\left(\sum_{k=1}^{n} k=\frac{n(n+1)}{2}\right)
$$

- Base case. Proof of $P(1)$ statement is lore for $n=1$

$$
\sum_{n=1}^{1}=1=\frac{1(1+1)}{2}=1
$$

- Induction step. Proof of $\forall m \geqslant 1, P(m) \rightarrow P(m+1)$

$$
\begin{aligned}
& P(m): \sum_{k=1}^{m} k=\frac{m(m+1)}{2} \quad \text { (assumption) } \\
& p(m+1): \sum_{k=1}^{m+1} k=\frac{(m+1)(m+2)}{2} \quad \text { (to prove) } \\
& k=\left(1+2 \sum_{k=1}^{\infty} k\right.
\end{aligned}
$$

$\forall n \in \mathbb{N}: 4^{n}-1$ is divisible by 3

- Base case: $P(1)$ is tace. $4^{\prime}-1=3,3$ is divisitic thy 3
- Induction step $P(x) \rightarrow P(x+1) \quad \forall x \in \mathbb{N}$ $P(x)$: $4^{x}-1$ is divisible by $3 \quad$ (induction hypothesis)
$P(x+1): 4^{x+1}-1$ is divisible by 3
\qquad 3k (assumption)

$$
4 \cdot 4^{x}=(3+1) \cdot 4^{x}=3 \cdot 4^{x}+4^{x}
$$

A country has two types of coins: 3 cent and 7 cent. Prove that you can make all sums of money starting from 12 cent (up to 1 cent accuracy) from these coins.

$$
\begin{aligned}
& \begin{array}{l}
t_{12}^{12}=3+3+3+3 \\
E_{13}^{13}=\frac{3+3}{7+70}++\quad \begin{array}{c}
3+3 \\
\vdots
\end{array}
\end{array} \\
& S_{F_{15}}=\frac{7+1}{3+3}+3+3 \\
& 516=3+3+3+7 \\
& 517=7+7+3 \\
& \begin{array}{l}
18=6 \cdot 3 \\
19=4 \cdot 3+70
\end{array} \\
& 2 \cdot 7 \rightarrow 5-3
\end{aligned}
$$

1) If we have 2×3 (at lear), we can so ic up
2) if we have 2×7, (at least), we con 80 lc up
3) we always hove 2×7 or 2×3
negation: max 1×7, max 1×3. Lan ot add up to 12 or mire

Proof by induction.

- Base case. P(12) holds.

$$
12=3+3+3+3
$$

- Induction step: $P(q) \rightarrow P(a+1)$

1) 9 has $\underbrace{2 \text { coins of } 7}_{r}$ or $\underbrace{2 \text { coins of } 3 \text { at least }}_{s}$
$\rightarrow \neg(r \vee s)=\neg r \wedge \neg s$ is impossible, as $q \geqslant 12$
2) If r is tire, then we con replace 2×7 by 5×3
3) if s is tire, then we can replace 2×3 by 7
\rightarrow in both cases, he can make $q+1$
$\forall x \in \mathbb{N}, \exists y \in \mathbb{N}: x^{y}<y^{x} \quad$ negation.

$$
\exists x \forall y: x^{y} \geqslant y^{x}
$$

\rightarrow this statement is fall, so we prove the
\rightarrow how to start?
t ty $x=1$. Then $1^{2}<2^{\prime} \rightarrow$ does not work.

$$
\begin{aligned}
& x=2, \quad 2^{3}<3^{2} \Rightarrow \text { dar not work, } \\
& x=3 \quad \ldots 2^{3}<3^{2}, 3^{3} \leq 3^{3}, 4^{3}<3^{4}, 5^{3}<3^{r}
\end{aligned}
$$

$L \rightarrow$ this might work!
\rightarrow 80, we thy to prove: $\forall y \in \mathbb{N}: y^{3} \leqslant 3^{4}$
\rightarrow we already know:

$$
\begin{array}{ll}
1^{3} \leqslant 3^{1} & \text { (or for } y=1) \\
2^{3} \leqslant 3^{2} & \text { (or for } y=2 \text {) } \\
3^{3} \leqslant 3^{3} & \text { (our for } y=3 \text {) }
\end{array}
$$

L we use induction for $y \geqslant 3$

- Base case: $y=3 \cdot 3^{3} \leqslant 3^{3}$ is true
- Induction step : $P(y) \rightarrow P(y+1) \quad \forall y \geqslant 3$
$P(y): y^{3} \leqslant 3^{y} \quad$ induction hypothesis

$$
P(y+1):\left\{\begin{array}{l}
3^{y+1} \\
(y+1)^{3} \\
\text { RUS }
\end{array}\right.
$$

strategy: we go from LHS to RHS using the

$$
\begin{array}{rlr}
(y+1)^{3} & =y^{3}+3 y^{2}+3 y+1 & \\
& \leqslant 3^{y}+3 y^{2}+3 y+1 & \\
& \text { (induction hypothesis) } \\
& \leqslant 3^{y}+y^{y}+3 y+1 & \text { i since } \left.y \geqslant 3, y^{3} \geqslant 3 y^{2}\right) \\
& \leqslant 3^{y}+3^{y}+3 y+1 & \\
& \text { (induction hypo) } \\
& \leqslant 3^{y}+3^{y}+y^{3}+ & \\
& & \left(y^{3} \geqslant 3 y+1 \Leftrightarrow y^{3}-3 y \geqslant 1\right. \\
& \leqslant 3 \cdot 3^{y} &
\end{array}
$$

End of chapter 1: Logic and proofs.

We already completed $1 / 3$ of the course.
Tomorrow: set theory

