Proof techniques:

- Direct proof
- Disproof by counterexample
$\} y \in S T \in R D A y$
- Proof by contradiction
- Proof by contrapositive
- Biconditional proof
- Proof by induction

Book: Chapter 1.5

Proof by contradiction

- You want to prove " $p$ ".
- You assume that $p$ is false (not $p$ )
- You deduce something absurd (false).
- Thus, the assumption "not $p$ " cannot be true. Therefore, $p$ needs to be true.

Example: there is no largest real number strictly smaller than 1. negation: there is an $x \in \mathbb{R}, x<1$, that is the largest real norther smaller than' 1 .
$\rightarrow$ Let's call this number M

$$
\rightarrow \quad \begin{aligned}
& M<1 \\
& \\
& \forall x \in \mathbb{R}, x<1: x \leqslant M
\end{aligned}
$$

Consider $y=\frac{M+1}{2}$. Then $M<1 \Rightarrow M+M<1+M$

$$
\begin{aligned}
\Rightarrow M & \Rightarrow \frac{1+1 T}{2} \\
M<1 \Rightarrow 1+M & <1+1 \\
\text { not } & \Rightarrow \frac{1+M}{2}<1
\end{aligned}
$$

So $M<y<1$. Contradiction: $M$ is not $\Rightarrow \frac{1+M}{2}<1$
the largest nutter <1, since $y$ is lar gen! $\sum_{\perp}$

Proof by contrapositive

- You want to prove "if $p$, then $q$ "
- Remember: $p \rightarrow q$ and $\neg q \rightarrow \neg p$ ar equivalent.
- Instead, you prove "if not $q$, then not $p$ "

Example: all prime numbers larger than 2 are odd
$(\forall x \in H, x>2): x$ paine $\rightarrow x$ is odd
$(\forall x \in \mathbb{H}, x>2)$ : $x$ even $\rightarrow x$ is not prime
Proof: $\left\{\begin{array}{l}x>2 \\ x \text { even } \Rightarrow x=2 k, k \in N, k>1\end{array}\right.$
$L_{2} x$ has more than 2 divisors, namely $1,2 k, 2, k, \ldots$
$\Rightarrow x$ is not paine $Q \in D$

Example: $(\forall x, y \in \mathbb{R})(x, y>0)\left(x^{2}+y^{2}>1 \Rightarrow x+y>1\right)$ contrapositive: $(\forall x, y \in \mathbb{R})(x, y>0)\left(x+y \leqslant 1 \Rightarrow x^{2}+y^{2} \leqslant 1\right)$

Let $x, y \in \mathbb{R}, x, y>0$

$$
\begin{aligned}
& x+y \leqslant 1 \\
\Rightarrow & (x+y)^{2} \leqslant 1^{2} \\
\Rightarrow & x^{2}+2 x y+y^{2} \leqslant 1 \\
\Rightarrow & x^{2}+2 x y+y^{2}-1-2 x y \\
\Rightarrow & x^{2}+y^{2} \leqslant 1-2 x y \quad \wedge \quad 1-2 x y \leqslant 1 \\
& a \leqslant b \\
& x^{2}+y^{2} \leqslant 1
\end{aligned} \quad b \leqslant c \leqslant 0
$$

Bicondilional proof

- To prove "if and only if" theorems
- Recall: $p \leftrightarrow q$ is short for $(p \rightarrow q) \wedge(q \rightarrow p)$
- We prove "if $p$, then $q$ " AND "if $q$, then $p$ "

Example: $\forall x \in \mathbb{I}: x^{2}$ is a multiple of $3 \Leftrightarrow x$ is a muttinle of 3 $\in 1 \forall x \in I: x$ is a multiple of $3 \Rightarrow x^{2}$ is a multiple of 3 $x$ is a muting of 3 . Then $x=3 k$, for some $k \in \mathbb{Z}$ Then $x^{2}=(3 k)^{2}=9 k^{2}=3\left(3 k^{2}\right)$
$\Rightarrow x^{2}$ is a multiple of 3
$\Rightarrow \forall x \in \mathbb{\mathbb { K }}: x^{2}$ is a multiple of $3 \Rightarrow x$ is a multiple of 3 contrapositive: $\forall x \in \mathbb{Z}: x$ is NOT a multiple of 3 $\Rightarrow x^{2}$ is NOT a multiple of 3

Let $x \in \mathbb{I}, x$ is NOT a multiple of 3 then $x=3 k+1 \vee x=3 k+2$

- If $x=3 k+1$, then

$$
\begin{aligned}
x^{2} & =(3 k+1)^{2}=9 k^{2}+6 k+1 \\
& =3\left(3 k^{2}+2 k\right)+1
\end{aligned}
$$

$\Rightarrow x^{2}$ is NOT a multiple of 3

- if $x=3 k+2$, then

$$
\begin{aligned}
x^{2} & =(3 k+2)^{2}=9 k^{2}+12 k+4 \\
& =9 k^{2}+12 k+3+1 \\
& =3\left(3 k^{2}+4 k+1\right)+1
\end{aligned}
$$

$\Rightarrow x^{2}$ is NOT a multink of 3
$L$ ) $x$ is not a multiple of $3 \Rightarrow x^{2}$ is not a multiple of 3
$\forall m \in \mathbb{N}, \forall n \in H C$ : Min is odd $\Leftrightarrow m$ and $n$ ore odd
$\Leftrightarrow \quad \forall m, n \in \mathbb{N}: m, n$ odd $\Rightarrow m \cdot n$ odd
Let $m, n \in \mathbb{N}$
$m=2 k+1$
$n=2 l+1$ , then $m \cdot n=(2 h+1)(2 e+1)=4 k l+2 k+2 l+1$
$\Rightarrow m \cdot n$ is odd
$\Rightarrow \forall m, n \in \mathbb{H}: m o n$ odd $\Rightarrow m$ and $n$ odd contrapositive: $\forall m, n \in \mathbb{N}: m$ or $n$ is even $\Rightarrow m$ on even

Let min $\in \mathbb{N}$
without loss of generality, assume $m=2 k, k \in \mathbb{Z}$. Then $m$ in $=2 k n$ is even.

Checklist (proofs)

- Do you understand why, if asked to prove something for all elements of a set, it is sufficient to start the proof by picking an arbitrary element?
- Do you understand why it is sufficient to disprove a "for all" statement to find a single counter-example?
- Are you comfortable proving statements of the form "if p, then q", by assuming $p$ that is true, and showing that of follows?
- Do you know that to prove $p \leftrightarrow q$, you need to prove both $p \rightarrow q$ and $q-p$ ?
- Are you comfortable using the different proof techniques (contrapositive, contradiction, disproof by counterexample, direct proof, bicondikional)?

