
Proof techniques: 

Direct proof •

Disproof by counterexample  •

Proof by contradiction •

Proof by contrapositive •

Biconditional proof •

Proof by induction •

 

Book: Chapter 1.5 
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Proof by contradiction 

You want to prove “p”. •

You assume that p is false (not p) •

You deduce something absurd (false). •

Thus, the assumption “not p” cannot be true. Therefore, p needs to be true. •

 

Example: there is no largest real number strictly smaller than 1. 
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Proof by contrapositive 

You want to prove “if p, then q” •

Remember:  •

Instead, you prove “if not q, then not p” •

 

Example: all prime numbers larger than 2 are odd 

 

 

 

 

 

 

 

 

 

 

p g and q p are equivalent

AX EM x 2 x prime x is odd

XEN X 2 x even x is not prime
P
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x has more than 2 divisors namely 1 2k 2 k

x is not prime QED to
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Biconditional proof 
To prove “if and only if” theorems •

Recall:  •

We prove “if p, then q” AND “if q, then p” •

 

Example: 

 

 

 

 

 

 

 

 

 

 

p es g is short for p q a Cq sp

AXE X is a multiple of 3 S x is a multiple of3

El Kx EI x is a multiple of 3 x is a multipleof3
x is a multiple of 3 Then x 3k for pom e KE I

Then x 3k 9k 3 3k
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x is a multiple of 3

I Fx EI X is a multiple of 3 x is a multipleof3
contrapositive FX EI x is not a multipleof3x2 is not a multipleof 3
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Checklist (proofs) 
Do you understand why, if asked to prove something for all elements of •

a set, it is sufficient to start the proof by picking an arbitrary element? 
Do you understand why it is sufficient to disprove a “for all” statement to •

find a single counter-example? 

Are you comfortable proving statements of the form “if p, then q”, by •

assuming p that is true, and showing that q follows? 

Do you know that to prove p <-> q, you need to prove both p->q and q->p? •

Are you comfortable using the different proof techniques (contrapositive, •

contradiction, disproof by counterexample, direct proof, biconditional)? 


