Lecture 1: recap

- Natural, whole and real numbers
- · Divisibility and prime numbers
- · Propositions
- Logical operations: and, or, not, implication,
 biconditional
- Truth tables

Lecture 2: Overview

- Quantifiers
- · Proofs: direct proofs
- Counterexamples

Book: Chapter 1, Sections 1.4, 1.5

There is a red ball in the box.

All the balls in the box are red.

There is a red ball in the box.

There is a red ball in the box.

There is a red ball in the box and all the balls in the box have the same color.

Every ball in the box is red, or every ball in the box is yellow.

For each ball in the box, it is either red or yellow.

All the balls in the box are red.

All the balls in the box are red. If a ball is in the box, it is red.

The box contains at least one ball, and every ball in the box is red.

Quantifiers

• for all (V b E box) (b is red) (universal) lall balls in the box re red)

(existential) • there exists 36 E box, b is red (there is a red ball in the box) Examples: All students and DACS or intelligent Vie student at DACS, x is intelligent x is student at DACS -> x is intelligent 3 x at DACS, X is intelligent There is an intelligent student at DACS

Negation of quantifier statements All balls in the box are red There is a ball that is not red = not all balls ar red Yb E box: b is red 36 E box : b is not red Every country has a nea border La there is a country without nea border (V countries) (countr has rea border) (3 country) ~ (country has nea border)

To negate, you flip the quantifiers and negate the body. (The truth value also flips.)

Higher depth quantifiers Every monkey diambs a free Negation : at least one monkey does not climb a tree Every tre has a monkey in it RAPE (VE)(Im) (m dimbe) RAPE 2 (VE)(Im) (m dimbe) 6 6 (Jt)(Mm)(m dimb t) (Jt)(MmV)(m dimb t)All monkeys dirb the came flee

The order of the quantifiers matters!

Every monkey dinbs a tree (Vm)(JE)(m dinbe) Negation: at least one monkey does not dimb a tree (Im) (Vt) (M climbst) RRZ

Note : I the quantifiers are the same , the order does not

 $\exists x \in \mathbb{Z} \exists y \in \mathbb{Z}(1)$ is the name as $\exists y \in \mathbb{Z} \exists x \in \mathbb{Z}(1)$ $\forall x \in \mathbb{Z} \forall y \in \mathbb{Z}(1)$ " $\forall y \in \mathbb{Z} \forall x \in \mathbb{Z}(...)$

Examples

Voc ER Zy ER: X+y > 4 negation: JXER VyER: X+y<4

$$\forall x \in \mathbb{H}$$
 $\exists y \in \mathbb{H}$ $\exists z \in \mathbb{H}$: $x^2 + y^2 = z^2$
negation : $\exists x \in \mathbb{N}$ $\forall y \in \mathbb{H}$ $\forall z \in \mathbb{H}$: $x^2 + y^2 \neq z^2$

- Proof techniques
- Direct proof
- Counterexample
- Contrapositive
- Contradiction
- Induction next

e today

tomorrow

next week

Direct proofs

- Move forward in logical steps from the assumption(s) to the conclusion.
- To prove "if p then q", you assume that p is true, and use this assumption to prove that q also holds
- To prove that a statement is false, you prove that the negation is true.

- To prove a "for all" statement, you prove the statement for an arbitrary element.
- To prove a "there exists" statement, you only need to give an example.

Let
$$n \in H$$

then $n \gg 1$
then $n \cdot n \gg n \cdot 1$ (since $n > 0$)
 $=> n^{2} \gg n$

Prove or disprove

$$\forall x \in \mathbb{Z} \quad \exists y \in \mathbb{Z} : 3x + y \leq 4$$

Let $x \in \mathbb{Z}$
 $choo = y = -3x + 1 \in \mathbb{Z}$
 $and \quad 3x + y = 3x + (-3x + 1) = 1 \leq 4$
 $\exists x \in \mathbb{Z} \quad \forall y \in \mathbb{Z} : x + y = y + 1$
 $choose \quad x = 1$. Then $1 \in \mathbb{Z}$ and $1 + y = y + 1$
 $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z} : xy < y^{2}$
 $\forall x \in \mathbb{Z} \quad \exists y \in \mathbb{Z} : xy > y^{2}$
Let $x \in \mathbb{Z}$. $choo = x \quad y = x \in \mathbb{Z}$
 $\#en \quad xy = x^{2} = y^{2} \gg y^{2}$

Counterexamples

- To disprove a "for all" statement
 - Prove or disprove • $\forall x \in M : x^2 > 4$ counterexample: 1 $1 \in H1$, 1 < 4

• $\forall x \in \mathbb{R}$: $x^2 \neq x$ counterexample: 0.5 $0.5 \in \mathbb{R}$, $0.5^2 = 0.25 < 0.5$

VX EH, Jy EH : x X X X negation : JX EH ; Y Y EH : X J Y

for you to find out which one is true! The isst to onow Office valid proof or worked out counter-example receives chocolate if if

(offer valid until 15/09/2023)

Checklist

- Do you understand how quantifiers work?
- Can you negate quantifier statements?
- Do you understand why, if asked to prove something for all elements of a set, it is sufficient to start the proof by picking an arbitrary element?
- Do you understand why it is sufficient to disprove a "for all" statement to find a single counter-example?
- Are you comfortable proving statements of the form "if p, then q", by assuming p that is true, and showing that q follows?