Lecture 1: recap

- Natural, whole and real numbers
- Divisibility and prime numbers
- Propositions
- Logical operations: and, or, not, implication, biconditional
- Truth tables

Lecture 2: Overview

- Quantifiers
- Proofs: direct proofs
- Counterexamples

Book: Chapter 1, Sections 1.4, 1.5

There is a red ball in the box.

All the balls in the box are red.

There is a red ball in the box.

There is a red ball in the box.

There is a red ball in the box and all the balls in the box have the same color.

Every ball in the box is red, or every ball in the box is yellow.

For each ball in the box, it is either red or yellow.

All the balls in the box are red.

All the balls in the box are red. If a ball is in the box, it is red.

The box contains at least one ball, and every ball in the box is red.

Quantifiers

- for all ($\forall b \in$ box $:(b$ is red) (universal) call balls in the box oe ed)
- there exists $\exists b \in b o x, b$ is red (existential) (there is a red ball in the hox)
Examples:
All students at DACS oe intelligent $\forall x$ student at DACS, x is intelligent x is student at DACS $\rightarrow x$ is intelligent
$\exists x$ at DACS, x is intelligent There is an intelligent student at DACS

Negation of quantifier statements
All balls in the box are red
There is a ball that is noted = not all balls or red
$\forall b \in b o x: b$ is red
$\exists b \in$ box : b is not red
Every country has a cia border
\angle there is a country without sea border
(\forall counties) (counts has sea bod den)
(\exists country) \neg (country has Sea border)
To negate, you flip the quantifiers and negate the body. (The truth value also flips.)

Higher depth quantifiers
Every monkey dims a tire

Negation: at least one monkey does not climb a tire Every tue has a monkey in it

$(\exists t)(\forall \mathrm{m})(\mathrm{cm}$ climb $t)$
$(\forall t)(\mathrm{fl})(\mathrm{m} \operatorname{dimbt})$ All monkeys dumb the same tie

The order of the quantifiers matters!

Every monkey dimbs a thee $(\forall m)(\exists t)(m$ ding)
Negation: at least one monkey does not climb a tree $(\exists \mathrm{m})(\forall t)\urcorner(m$ dimbst $)$

Note: I the quantifiers ore the same; the order does not $\exists x \in \mathbb{Z} \exists y \in \mathbb{Z}()$ is the same as $\exists y \in \mathbb{Z} \exists x \in \mathbb{Z}()$ $\forall x \in \mathbb{Z} \quad \forall y \in \overline{\mathbb{C}}()$ is $\quad \forall y \in \mathbb{Z} \forall x \in \mathbb{Z}(\ldots)$

Examples
$\forall x \in \mathbb{R}$ by $\in \mathbb{R}: x+y \geqslant 4$
negation : $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R}: x+y<4$
$\forall x \in \mathbb{N} \quad \exists y \in \mathbb{H} \quad \exists z \in \mathbb{N}: x^{2}+y^{2}=z^{2}$ negation: $\exists x \in \mathbb{N} \forall y \in \mathbb{N} \quad \forall 2 \in \mathbb{N}: x^{2}+y^{2} \neq z^{2}$

Proof techniques

- Direct proof
- Counterexample
- Contrapositive
- Contradiction
- Induction

Direct proofs

- Move forward in logical steps from the assumption (s) to the conclusion.
- To prove "if p then q ", you assume that p is true, and use this assumption to prove that q also holds
- To prove that a statement is false, you prove that the negation is true.

Example: $\forall n \in \mathbb{N}: n^{2} \geqslant n$

- To prove a "for all" statement, you prove the statement for an arbitrary element.
- To prove a "there exists" statement, you only need to give an example.

Let $n \in \mathbb{H}$
then $n \geqslant 1$
then $n \cdot n \geqslant n \cdot 1 \quad($ since $n>0)$

$$
\Rightarrow \quad n^{2} \geqslant n
$$

Prove or disprove

$$
\begin{aligned}
& \forall x \in \mathbb{Z} \quad \exists y \in \mathbb{Z}: 3 x+y \leqslant 4 \\
& \text { Let } x \in \mathbb{Z} \\
& \text { choose } y=-3 x+1 \in \mathbb{Z} \\
& \text { and } 3 x+y=3 x+(-3 x+1)=1 \leqslant 4 \\
& \exists x \in \mathbb{Z} \quad \forall y \in \mathbb{Z}: x+y=y+1
\end{aligned}
$$

Choose $x=1$. Then $1 \in \mathbb{Z}$ and $1+y=y+1$

$$
\begin{array}{ll}
\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}: & x y<y^{2} \\
\forall x \in \mathbb{Z} & \forall y \in \mathbb{Z}:
\end{array}
$$

Let $x \in \mathbb{Z}$. Chook $y=x \in \mathbb{Z}$ then $x y=x^{2}=y^{2} \geqslant y^{2}$

Counterexamples

- To disprove a "for all" statement

Prove or dis prove

- $\forall x \in \mathbb{N}: x^{2}>4$ counterexample: 1

$$
1 \in+1,1^{2}<4
$$

- $\forall x \in \mathbb{R}: x^{2} \geqslant x$ counterexample: 0.5 0.5 ER, $\quad 0.5^{2}=0.25<0.5$
$\forall x \in H, \exists y \in H: x^{y}<y^{x}$
negation: $\exists x \in \mathbb{N} ; \forall y \in \mathbb{N}: \quad x^{y} \geqslant y^{x}$
for you to find out which one is tive! The iss to show Oft a valid proof or worked out counter-example receives chocolate if ar
(offer valid until 15/09/2023)

Checklist

- Do you understand how quantifiers work?
- Can you negate quantifier statements?
- Do you understand why, if asked to prove something for all elements of a set, it is sufficient to start the proof by picking an arbitrary element?
- Do you understand why it is sufficient to disprove a "for all" statement to find a single counter-example?
- Are you comfortable proving statements of the form "if p, then $q^{\prime \prime}$, by assuming p that is true, and showing that 9 follows?

