Combinatoric	s (mathemal	ics of	counti	(e^{n})
· Rule of sum. ri	ule of produc			
Counting				
o laittle order	ille repetition			
• With order, w	ithout repetit	ion		
o without orae	r, without rep	ecicion		
o without orde	r with repetit	ion		

Counting with/without order, with/without repetition	
How many ways can I select 2 letters from the set {A, B, C}?	
• order is important and repetition is allowed	
9 possibilities ; AA AB AC BA BB BC CA CB CC	
• order doesn't matter, and repetition is allowed	
AA AB AC BB BC CC 6 possibilities BA CA CB	
• order doesn't matter, and repetition is not allowed	
AB, AC, BC	
• order is important, repetition is not allowed	
AB AC DA BC CA CB 6 possibilities	

How many different 5-letter, case-sensitive passwords can we generate?	
• order matters (abcde is not the Dame as bacde)	
• repetition is allowed (we can choose the pane letter for multiple positions, aaAbb is a valid password)	
$ \rightarrow \text{ we have } \begin{array}{c} 2 \times 26 \text{ options for the first letter} \\ 2 \times 26 \\ 2 \times 26 \\ 2 \times 26 \end{array} \qquad $	
If repetition is allowed, the number of ordered selections of k objects	
from a set of n objects is n ^k	
# here n = 52 (52 options for each letter) k = 5 (you choose 5 letters)	

A committee has 10 members. They want to select a chairperson, a treasurer and an administrator, and each member can do at most one of these jobs? How many different possibilities do they have?
• order matters (Otti as chair and Mariche as freasurer is not the name as Maricke as chair and Otti as freesurer)
· repetition is not allowed (one person carnot do two jobs)
-> 10 options for the chair 9 options treasure (since I person is already chair) 8 options administrator
total: 10×9×8 = 720 different committees.
$L_{3} = \frac{10!}{7!}$
If repetition is not allowed, the number of ordered selections of k objects
from a set of n objects is $n \ge (n-1) \ge (n-k+1)$. L_s can be written as $\frac{n!}{(n-k)!}$ • notations: $(n)_k = \frac{n}{k} P_k$ (permutation)
$\dots h = 3 (10 \text{ persons to choose } prom) h = 3 (3 \cdot \text{Johs}) \dots \dots$

An exam has 7 questions. A students has to answer 4. How many ways can this happen?
· repetition is not allowed (you cannot solve &) 4 times)
order is not important (answering G1, Q3, QF, G7, is the
-> if order mattered, we had 7×6×5×4 ways
Q1 Q3 Q5 Q7
Q1 Q7 Q7 Q3 we have 41 different orders
Lo so we correct over counting by dividing by 41
If repetition is not allowed and order does not matter, the number of
selections of k objects from a set of n objects is $\frac{n!}{k!(n-h)}$
notations; (k), nck (combination)

We have Bidentical dice. If we throw them at the same time, how many different patterns are possible?	
order does not matter (464 is the name as 446)	
· repetition is allowed (you can coll more than one 6).	
-> all possible outcomes can be ourmarized in a table	
$\begin{array}{c cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline x & x & x & - & - & 134 & x x every outcome \\ \hline x & x & x & - & - & 225 & $) to and
Ly the number of out comes = the numbers of patterns. consisting of s har 3 cro	,s ,sess
L> 8 positions you need to relect 3 positions to put the x (repetition not allowed, order does not (matter)) 3! = 8.7.8 = 56 5!3! = 6	
When repetition is allowed and order does not matter, the number of way	1 5
• n-1 bars (column dividers) for n options] (n-1+k)) k! (n-1)	
· le crosses n-1+k objects in the strin	1

Hc)))	Y	no	in	y	di	ff	e	re	n		n	i. VV	nb	er	S	be	Ŀ4	se.	en		ک در	an	d	1	00	0	ha	λ∨	e.	ex	٥٢	÷ĿL	5	0	ne		3?: }		
		• • •	رس	· ·	Ċ	0.	Ņ	·		ł	r	•		ţ	h	•		. <i>l</i>	`2	s7		•	2."	n <i>d</i>			0	· (`·		3	[(d	L.		d	i.f	1. J	2	• • •		
																			Ĵ												Ŀ									
																		8	0 1	n		2	ne.	Ś							8	0 O								
																		} • •	•••	f.			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								γ	•								
																							y. R	/. 1.,	י. היו		1.12/	7.5												
			•	> .	3	·×		Ś	81	•	-		.2	Ľ,	3		r	VJ	1-	h	g[. (••••				.)												
			•	•				•					٠	•				0				. (9																	
								•																																

Ho If	برج ا	۲ (دی:	Ma O	an pe	y 20	w pl	ai e	js iv	C NSI	av isl	6 5N	pe	o it	ole tiv	2.1	sit te	0 20	le let	a :he	rc 2r,	su h	nc Ou	2	cal m	bl ar	e? Ny	0	pt	io	n:	s c	274	N N	le	ft?	•		
				0		•																				64												
						•	•																															
• •						\mathcal{I}		ý																														
						,		/																														

How many ways can we distribute 10 chocolates over 7 people? What if each person gets at least one chocolate? What if each person gets at most two chocolates?	.8.00.8.
1) Repetition allowed (a person can got more then I choeole	rte)
2) order not important (Giving the 1st chocolate to A and the or vice versa, is the name ortiation;	2^{nd} to B ;
Lo "textbook" unordered aelection with repetition $n = 7$ (7 persons to make happy with chocolate), $h = 10$ (10 time you pick a $\frac{(n+k-1)!}{(make)!} = \frac{16!}{16!} = 8008$	y.ov. can choose person) achoice)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	an example of hocolate distribution
CASEI	
• we have no options for the first 7 chocolates lone for each . we can distribute 3 chocolates over 7 persons, order d	h). locs not matter. ion allowed.
Ly unordered nelection with repetition, $n=7$, $k=3$ $\frac{(n+k-i)!}{k!(n-i)!} = \frac{q!}{3!6!} = \frac{q\cdot8\cdot7}{6} = 84$	

CASE III (you need insight and creativity)
1. 5 people receive 2 chocolates, 2 receive nothing
2. 4 people receive 1 chocolate, 3 receive 2 chocolates
3. 4 people neceive 2 chocolates, 2 neceive 1 chocolate, 1 neceives.
S these are the only options.
-3 case 1: select 2 poor persons from a group of 7. $\frac{7\times6}{2}$ way. (no repretation, no order)
· · · · · · · · · · · · · · · · · · ·
$ cax 2 : celect 3 ortunate persons from 7 7 \times 7 \times 7 \times 5 = 35 (no repetition no order)) \longrightarrow 7 \times 7 \times 7 \times 5 = 35 way$
-s case 3 : 7 options to choose the person without chocolate $\binom{6}{2} = \frac{6.5}{2} = 15 ways to choose 2 persons from the 6$ that or left, who receive 1 choc.
total (rule of sur) = 105 + 35 +21 = 161 possibilities

5c We have 3 colours of paint available, red, blue and green. There is an unlimited amount of each 5p available, but we are only allowed to buy whole litres of paint. We want to mix these paints to obtain a total volume of 8 litres. The colour of the paint we obtain is uniquely determined by the amount of red, blue and green in it. (So, "Three litres red, two litres blue, three litres green" will generate one colour, and "Two litres red, five litres blue, one litre green" will generate another colour.) How many different colours can we obtain?

- 45 〔a〕
- b 56
- c 120
- d e 336
 - 512
- f6561
- None of the above. (g)

· epitition allowed	R	e e g	13	• • • •	
· order does not matter	$\times \times \times$	\times ×××			
n=3 $(n+k-1)$ 101					
k = 8 $(2 + 1) + 1$ $8 + 21$	$1 = 1 \times $	$X \times X \times X$	≿]		
$(r_1 - r_1) - r_2 + \cdots + (r_n - r_n) - r_n + \cdots + (r_n - r_n) - \cdots $					
= 10.9	= 45				
2					

		•	٠	•														2226						-				
				80		بر ا	•		3			•	ું			1			k .		10			J				
				<u>}</u> .~	1000)		R J								•	Ϋ́,		n Jî	1	۴.				
			5/					ġļ.							٠	- CATL												