Combinatorics (mathematics of counting)

- Rule of sum, rule of product
- Counting
- With order, with repetition
- With order, without repetition
- Without order, without repetition
- Without order, with repetition

Counting with/without order, with/without repetition
How many ways can I select 2 letters from the set $\{A, B, C\}$? - order is important and repetition is allowed

- order doesnt matter, and repetition is allowed

- order doesut matter, and repetition is not allowed
- order is important, repetition is not allowed
$A B \quad A C \quad D A \quad B C \quad C A C B \quad$ bossihilitics

How many different s-letter; case-sensitive passwords can we generate?

- order matters (abcde is not the came as bacde)
- repetition is allowed (we can chook the jane letter for multiple positions, aaA bb is a valid. password)

If repetition is allowed, the number of ordered selections of k objects from a set of n objects $i s n^{\prime} k$

* here $n=\leqslant 2$ (52 options for each letter)
$k=5$ (you chook 5 letters)

A committee has 10 members. They want to select a chairperson, a treasurer and an administrator, and each member can do at most one of these jobs? How many different possibilities do they have?

- order matters (oft as chair and Marche as treasurer is not the name as Macicke as chair and Otti as treasurer.
- repetition is not allowed (one person carat do two jobs)
$\rightarrow 10$ options for the chair
9 options treasure (since i person is already chair) 8 potions. administrator
total: $10 \times 9 \times 8=720$ different committees.

$$
L \frac{10!}{7!}
$$

If repetition is not allowed, the number of ordered selections of k objects from a set of n objects is $n x(n-1) \times \ldots x(n-k+1)$.

- notations : $(n)_{k},{ }^{n} P_{k}$ (permutation)
L_{3} con be written as $\frac{n!}{(n-k)!}$
- here,$n=10$ (10 persons to choose from), $h=3$ (3 jobs)

An exam has 7 questions. A students has to answer. 4. How many ways can this happen?

- repetition is not allowed (you cannot solve Qi 4 times)
- order is not important (answering Q1, Q3, Qr, Q7 is the Dame as Q1,Q7,Q(Q3)
\longrightarrow if order mattered , we had $7 \times 6 \times r \times 4$ ways L we need to correct for counting the came net of questions multiple times..
Qi QB QL Q \mathbf{Q}^{5}
Q1 Q7 Q5 Q3 Q3 Q3 Q5 we have Gl dffent orders
L so we correct overcounting by dividing by 4! answer: $\frac{7 \times 6 \times 5 \times 4}{4!}=\frac{7 \times 6 \times 5 \times 8}{4 \times 8 \times 12 \times 1}=35$ ways
If repetition is not allowed and order does not matter, the number of selections of k objects from a set of n objects $i s \frac{n \text { ? }}{|a|(n-n)]}$ here: $n=7, k=4$ notations: $\binom{n}{k},{ }^{n} C_{k}$ (cominination)
k
We have (3)identical dice. If we throw them at the same time, how many different patterns are possible?
- order does not matter ($4 \cdot 6 \cdot 4$ is the name as 446)
- repetition is allowed (you can roll amor than one 6)
\rightarrow all possible outcomes can he summarized in a table

L_{0} the number of out comes $=$ the nurturers of patterns consisting of s has 3 crosses
$\rightarrow 8$ positions you need to select 3 positions to pit the x (repetition not all owed; order does not matter.)

$$
\longrightarrow \frac{8!}{5!3!}=\frac{877}{6}=56
$$

When repetition is allowed and order does not matter, the number of ways to select k objects from a set of n objects is given by $\frac{(n-1+k)!}{k|(n-1)|}$

- k crosses

How many different numbers between 0 and 1000 have exactly one 3?

- 3 can the the 1 st $2^{\text {nd }}$ or $3^{\text {rd digit }}$

81. munithers
\downarrow
81
$\rightarrow 3 \times 81 \div 243$ numbers.

How many ways can 6 people sit at a round table? If two people insist on sitting together, how many options are left? Diy

How many ways can we distribute 10 chocolates over 7 people?
What if each person gets at least one chocolate?
What if each person gets at most two chocolates?
CASE I

1) Repetition allowed (a person can get more then l chocolate)
2) order not important (Giving the isth chocolate $60 A$ and the $2^{\text {nd }}$ to B; or vice versa is the came situation?
\rightarrow "textbook" unordered aelection with repetition $n=7$ ${ }_{7}$ persons you can choose to make happy with chocolate), $h=10$ (10. tine you pick a per sori)

$$
\frac{(n+k-1)!}{k!(n-1)!}=\frac{16!}{10!6!}=8008
$$

A	B	C	D	E	F	G
x	x	x	x	x		x
	x		x	x		x

an exaripic of
chocolate distribution.

CASE II

- we have no options for the first 7 chocolates (one for each)
- we can distribute 3 chocolates over. 7. persons; order docs not matter. repetition allowed
\rightarrow unordered selection with repetition, $n=7, k=3$

$$
\frac{(n+k-i)!}{k!(n-!)!}=\frac{9!}{3!6!}=\frac{9: 87}{6}=84
$$

CASE III (you need insight and creativity)

1. 5 people receive 2 chocolates, 2 receive nothing
2. 4 people receive l chocolate, 3 receive 2 chocolates

3 - 4 people receive 2 chocolates, 2 receive 1 chocolate il receives nothing
\rightarrow these are the only options
$\begin{aligned} \rightarrow \text { cad } 1: & \text { select } 2 \text { poor persons from a group of } 7 \\ & \left(n_{0} \text { repetition, no order) } \rightarrow \frac{7 \times 6}{2} \text { ways }\right.\end{aligned}$ $=21$
\longrightarrow cav 2 select 3 fortunate persons from $7 \ldots 7 \times \neq 5 \times 5=35$ (no repetition no order) $\cdots \frac{7 \times \not \times 5}{6}=35$. \rightarrow ways
— case 3 options to choose the person without chocolate $\binom{6}{2}=\frac{6.5}{2}=15$ ways to choose 2 persons from the 6 that or left who receive I choc.
4. 7×15 ways $=105$ ways
total (yule of sun) $105+35+21=161$ possibilities

Sc We have 3 colours of paint available, red, blue and green. There is an unlimited amount of each available, but we are only allowed to buy whole litres of paint. We want to mix these paints to obtain a total volume of 8 litres. The colour of the paint we obtain is uniquely determined by the amount of red, blue and green in it. (So, "Three litres red, two litres blue, three litres green" will generate one colour, and "Two litres red, five litres blue, one litre green" will generate another colour.) How many different colours can we obtain?
(a) 45
(b) 56
(c) 120
(d) 336
(e) 512
(f) 6561
(g) None of the above.

- epitition allowed
- order does not matter

R	q	B
$x \times x \times$	$\times x \times x$	

$$
\begin{aligned}
n=3 \\
k=8
\end{aligned} \quad \frac{(n+k-1)!}{(n-1)|h|}=\frac{10!}{8!2!} \times \times
$$

Enjoy your project week!

