Course overview

- Logic (week 1)
- Proof techniques (weeks 1-2)
- Set theory (weeks 2-3)
- Relations (weeks 3-4)
- Functions (week 4)
- Combinatorics (this week)

Combinatorics (mathematics of counting)

- Inclusion-exclusion
- Rule of sum and rule of product
- Permutations and combinations
- Selections with/without order, with/without repetition

Today: Book section 2.5 and section 4.2

Inclusion-exclusion

Example: From a total of 260 students, 110 students choose an elective course on Mathematics. 150 students are enrolled in a Physics course. 85 of those take both Physics and Mathematics. How many students don take either course?

$$
\begin{aligned}
& |M|=110 \\
& |P|=150 \\
& |U|=250 \\
& |\cup|(P \cup M) \mid= \\
& 250-25-85-65= \\
& 75
\end{aligned}
$$

$$
|M \cup P|=|M|+|P|-|P \cap M|
$$

From a total of 250 students, 110 students choose an elective course on Mathematics. 150 students are enrolled in a Physics course. 85 of those take both Physics and Mathematics.
From those 250 students, 50 are Dutch. From the Dutch students, 17 take (at Least) Mathematics, 10 take (at least) Physics, s take both. How many of the students who take none of the courses are not Dutch?

$$
\begin{aligned}
& |U|-|M \cup P U D| \\
& |M \cup P U D|=|M| \\
& +|P|+I D I \\
& -|M \cap P| \\
& -|M \cap D| \\
& -|P \cap D| \\
& +|P \cap O \cap H|
\end{aligned}
$$

$110+150+50-(85+17+10)+r$

- sso students do the Discrete Mathematics exam
- Every student could do at least 1 question
- 110 students could Not do Q1 $\rightarrow 550-110$ could do Q1 Il= 440
- 165 students could NoT do Q2 $|Q 2|=550-165=385$
- 230 students could NOT do Q3 $\quad 1 Q 31 \div 550-230=320$
- 60 students could do all 3 questions How many students could do exactly 2 questions?

what is asked

$$
\begin{aligned}
& \text { IQ ПQ21 - } Q \text { Qt AQ aQ }
\end{aligned}
$$

$$
\begin{aligned}
& 1 Q 2 \cap Q 31-1 Q 1 \cap Q 2 \cap Q 1 \\
& x-180
\end{aligned}
$$

$$
\begin{aligned}
550 & =440+385+320-x+60+65-65 \\
-x-x & =550-65 \\
x & =655
\end{aligned}
$$

\rightarrow ansaer $\quad 655-180=475$

Combinatorics - sum and product
Rule of sum: If a set of objects can be divided into disjoint subsets, then the total number of objects is the sum of the number of objects in each subset,

CS : 297 students There oe $297+240$ options to chook DSAI: 240 students. a student representative

Rule of product: when the objects we count have multiple parts, that can be selected independently, the total number of different objects is the product of the number of options for each part,
\leftrightarrow there ore 2 iso ways to choose a DSAI represcutative there de 297 ways to choose a CS representative
\Rightarrow there are 240×297 ways to choose a cominittce of a DSAI and a cS representative

I am taking 2 pieces of luggage on a flight. I have 3 types of luggage:

- 3 suitcases
- 4 rucksacks
- 2 holdalls

How many ways can I select 2 different pieces of luggage?

$$
\begin{aligned}
& |S R|+|R H|+|S H| \\
& 12+8+26
\end{aligned}
$$

(Note \therefore if pieces of the came ty re were allowed, the correct answer would he $36 \rightarrow$ see next lecture)

Counting with I without odor I upitition.
$\{A, B, C\} \rightarrow$ in how many ways cav we select 2 letters?
$\because A A, A B, A C, B A, B B, B C, C A, C B, C C, 1 a)$ with repetition with order.

- repetition not allowed , order matters $A B, A C, B A, B C, C A, C B$ (6 options
- repetition not allowed order dues not matter $A B, A C, B C$
- repetition allowed order does not matter $A A, A B, A C, B B, B C, C C$ (6 .options)
- 6 friends cation icecrean 10 choices of ice drear.
\rightarrow order matters
- د unctition allowed
- 6 persons, how many sating ascangements
\rightarrow order important
\rightarrow upitition not allowed
- 7 exam questions you need to sole 4
\rightarrow order not in portant
\rightarrow ieretition not allowed.
- 3 dice now many diffurut outcomes? repetition allowed, order not important
- How many stings of 8 hits can lie mate with exactly 3 ones?

$$
\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array} 0
$$

\rightarrow chook 3 positions out of 8 repetition not allowed order does not matter

Checklist

- Do you know the inclusion-exclusion formula for 2 and 3 sets?
- Can you use the inclusion-exclusion formula, and first principles to solve counting problems?
- Can you apply the sum and product rule to simple counting problems?

To be continued tomorrow

