Conditional propositions

－$p \rightarrow q$
－Read as：of p ，then q

$$
\begin{aligned}
& p \text { implies } q \\
& p \text { is a suffient condition for } 9
\end{aligned}
$$

－If p is true，q aust onto be true
－If p is false，we have no information about $q \quad p \rightarrow q$ toe
■ Examples：
－If $1+1=3$ ，then the moon is made of cheese．True
－If 9 is divisible by 3,7 is not divisible by 3 ．
－If 9 is divisible by 3 ，all integers are even．False
－If $1+1=3$ ，then $2+3=5$ ．
■ Note：

$$
p \sim q \neq q \rightarrow p
$$

Conditional propositions - equivalences

The following propositions are equivalent

- $p \rightarrow q$
- $\neg q \rightarrow \neg p \quad$ contrapontive
- $\neg p \vee q$

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \rightarrow \neg p$	$\neg p \vee q$
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	E	T	T	T
F	F	T	T	T	T	T

The biconditional

- $p \leftrightarrow q$
- Short for: $(p \rightarrow q) \wedge(q \rightarrow p)$
- Read as:
p is equivalent to q
p \& and only of q p if q

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
$F F$	T	T	T	

p is a necessary and sufficient condition for 9

